IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202523.html
   My bibliography  Save this paper

Forecasting GDP with Oil Price Shocks: A Mixed-Frequency Time-Varying Perspective

Author

Listed:
  • Jiawen Luo

    (School of Business Administration, South China University of Technology, Guangzhou 510640, China)

  • Jingyi Deng

    (School of Business Administration, South China University of Technology, Guangzhou 510640, China)

  • Juncal Cunado

    (University of Navarra, School of Economics, Edificio Amigos, E-31080 Pamplona, Spain)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

Abstract

This paper investigates the predictability of supply and demand oil price shocks on U.S. Gross Domestic Product (GDP) using several Mixed Data Sampling (MIDAS) models that link quarterly GDP to monthly oil price shocks for the period 1981-2023. The main findings reveal that oil demand shocks, particularly economic activity and inventory shocks, have higher forecast ability than oil supply shocks, highlighting the importance of disentangling oil price shocks into their underlying components. Additionally, our results suggest that the Time Varying Parameter (TVP)-MIDAS model most effectively captures the dynamic relationship between oil price fluctuations and economic activity, pointing to the heterogeneous impact of oil price shocks over time. Finally, when we extend our analysis to other regions in the world, the results suggest that while oil demand shocks play a significant role in forecasting economic activity in advanced regions, the emerging regions are more vulnerable to oil supply shocks.

Suggested Citation

  • Jiawen Luo & Jingyi Deng & Juncal Cunado & Rangan Gupta, 2025. "Forecasting GDP with Oil Price Shocks: A Mixed-Frequency Time-Varying Perspective," Working Papers 202523, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202523
    as

    Download full text from publisher

    File URL: http://www.up.ac.za/media/shared/61/WP/wp_2025_23.zp269051.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    2. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    3. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
    4. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    5. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    6. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
    7. Valerie Grossman & Adrienne Mack & Enrique Martínez-García, 2014. "A New Database of Global Economic Indicators," Journal of Economic and Social Measurement, IOS Press, issue 3, pages 163-197.
    8. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    9. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    10. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    11. Lutz Kilian & Robert J. Vigfusson, 2013. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
    12. Robert C Ready, 2018. "Oil Prices and the Stock Market [The vix, the variance premium and stock market volatility]," Review of Finance, European Finance Association, vol. 22(1), pages 155-176.
    13. Polat, Onur & Cunado, Juncal & Cepni, Oguzhan & Gupta, Rangan, 2025. "Oil price shocks and the connectedness of US state-level financial markets," Energy Economics, Elsevier, vol. 141(C).
    14. Christiane Baumeister & James D. Hamilton, 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
    15. Lutz Kilian & Robert J. Vigfusson, 2017. "The Role of Oil Price Shocks in Causing U.S. Recessions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(8), pages 1747-1776, December.
    16. Hassani, Hossein & Rua, António & Silva, Emmanuel Sirimal & Thomakos, Dimitrios, 2019. "Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1263-1272.
    17. Robert B. Barsky & Lutz Kilian, 2002. "Do We Really Know That Oil Caused the Great Stagflation? A Monetary Alternative," NBER Chapters, in: NBER Macroeconomics Annual 2001, Volume 16, pages 137-198, National Bureau of Economic Research, Inc.
    18. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
    19. Francesco Ravazzolo & Philip Rothman, 2013. "Oil and U.S. GDP: A Real-Time Out-of-Sample Examination," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(2-3), pages 449-463, March.
    20. Cepni, Oguzhan & Gupta, Rangan & Karahan, Cenk C. & Lucey, Brian, 2022. "Oil price shocks and yield curve dynamics in emerging markets," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 613-623.
    21. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    22. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    23. repec:mcb:jmoncb:v:45:y:2013:i::p:449-463 is not listed on IDEAS
    24. Ravazzolo Francesco & Rothman Philip, 2016. "Oil-price density forecasts of US GDP," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 441-453, September.
    25. Lu, Fei & Zeng, Qing & Bouri, Elie & Tao, Ying, 2024. "Forecasting US GDP growth rates in a rich environment of macroeconomic data," International Review of Economics & Finance, Elsevier, vol. 95(C).
    26. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herrera, Ana María & Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2019. "Oil price shocks and U.S. economic activity," Energy Policy, Elsevier, vol. 129(C), pages 89-99.
    2. Charfeddine, Lanouar & Klein, Tony & Walther, Thomas, 2018. "Oil Price Changes and U.S. Real GDP Growth: Is this Time Different?," QBS Working Paper Series 2018/03, Queen's University Belfast, Queen's Business School.
    3. Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
    4. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
    5. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    6. Claudio Morana, 2013. "The Oil Price-Macroeconomy Relationship Since the Mid-1980s: A Global Perspective," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    7. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    8. Nonejad, Nima, 2021. "The price of crude oil and (conditional) out-of-sample predictability of world industrial production," Journal of Commodity Markets, Elsevier, vol. 23(C).
    9. Zheng, Xinwei & Su, Dan, 2017. "Impacts of oil price shocks on Chinese stock market liquidity," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 136-174.
    10. Zhang, Zhikai & Wang, Yudong & Xiao, Jihong & Zhang, Yaojie, 2023. "Not all geopolitical shocks are alike: Identifying price dynamics in the crude oil market under tensions," Resources Policy, Elsevier, vol. 80(C).
    11. Broadstock, David C. & Filis, George, 2014. "Oil price shocks and stock market returns: New evidence from the United States and China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 417-433.
    12. Ravazzolo Francesco & Rothman Philip, 2016. "Oil-price density forecasts of US GDP," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 441-453, September.
    13. Nima Ebrahimi & Craig Pirrong, 2020. "Oil jump risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(8), pages 1282-1311, August.
    14. Lutz Kilian, 2014. "Oil Price Shocks: Causes and Consequences," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 133-154, October.
    15. Kurov, Alexander & Olson, Eric & Wolfe, Marketa Halova, 2024. "Have the causal effects between equities, oil prices, and monetary policy changed over time?," Journal of Commodity Markets, Elsevier, vol. 36(C).
    16. Gnimassoun, Blaise & Joëts, Marc & Razafindrabe, Tovonony, 2017. "On the link between current account and oil price fluctuations in diversified economies: The case of Canada," International Economics, Elsevier, vol. 152(C), pages 63-78.
    17. Aastveit, Knut Are, 2014. "Oil price shocks in a data-rich environment," Energy Economics, Elsevier, vol. 45(C), pages 268-279.
    18. Nonejad, Nima, 2022. "Understanding the conditional out-of-sample predictive impact of the price of crude oil on aggregate equity return volatility," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    19. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    20. Jon Ellingsen & Caroline Espegren, 2022. "Lost in transition? Earnings losses of displaced petroleum workers," Working Papers No 06/2022, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.