IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_6835.html
   My bibliography  Save this paper

Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks

Author

Listed:
  • Christiane Baumeister
  • James D. Hamilton

Abstract

Traditional approaches to structural vector autoregressions can be viewed as special cases of Bayesian inference arising from very strong prior beliefs. These methods can be generalized with a less restrictive formulation that incorporates uncertainty about the identifying assumptions themselves. We use this approach to revisit the importance of shocks to oil supply and demand. Supply disruptions turn out to be a bigger factor in historical oil price movements and inventory accumulation a smaller factor than implied by earlier estimates. Supply shocks lead to a reduction in global economic activity after a significant lag, whereas shocks to oil demand do not.

Suggested Citation

  • Christiane Baumeister & James D. Hamilton, 2017. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," CESifo Working Paper Series 6835, CESifo Group Munich.
  • Handle: RePEc:ces:ceswps:_6835
    as

    Download full text from publisher

    File URL: https://www.cesifo-group.de/DocDL/cesifo1_wp6835.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Espey, Molly, 1998. "Gasoline demand revisited: an international meta-analysis of elasticities," Energy Economics, Elsevier, vol. 20(3), pages 273-295, June.
    2. John Coglianese & Lucas W. Davis & Lutz Kilian & James H. Stock, 2017. "Anticipation, Tax Avoidance, and the Price Elasticity of Gasoline Demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 1-15, January.
    3. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    4. Kilian, Lutz & Vigfusson, Robert J., 2011. "Nonlinearities In The Oil Price–Output Relationship," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 337-363, November.
    5. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    6. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    7. Halpern, Joseph Y. & Kets, Willemien, 2015. "Ambiguous language and common priors," Games and Economic Behavior, Elsevier, vol. 90(C), pages 171-180.
    8. John Baffes & M. Ayhan Kose & Franziska Ohnsorge & Marc Stocker, 2015. "The great plunge in oil prices: causes, consequences, and policy responses," CAMA Working Papers 2015-23, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    9. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    10. Hilde C. Bjørnland & Frode Martin Nordvik & Maximilian Rohrer, 2017. "Supply Flexibility in the Shale Patch: Evidence from North Dakota," Working Papers No 2/2017, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    11. Christiane Baumeister & Gert Peersman, 2013. "The Role Of Time‐Varying Price Elasticities In Accounting For Volatility Changes In The Crude Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1087-1109, November.
    12. repec:eee:dyncon:v:79:y:2017:i:c:p:66-78 is not listed on IDEAS
    13. Lucas W. Davis, 2014. "The Economic Cost of Global Fuel Subsidies," American Economic Review, American Economic Association, vol. 104(5), pages 581-585, May.
    14. James D. Hamilton, 2013. "Oil prices, exhaustible resources and economic growth," Chapters,in: Handbook on Energy and Climate Change, chapter 1, pages 29-63 Edward Elgar Publishing.
    15. Michael Gelman & Yuriy Gorodnichenko & Shachar Kariv & Dmitri Koustas & Matthew D. Shapiro & Dan Silverman & Steven Tadelis, 2016. "The Response of Consumer Spending to Changes in Gasoline Prices," NBER Working Papers 22969, National Bureau of Economic Research, Inc.
    16. Luciana Juvenal & Ivan Petrella, 2015. "Speculation in the Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 621-649, June.
    17. Dario Caldara & Michele Cavallo & Matteo Iacoviello, 2016. "Oil Price Elasticities and Oil Price Fluctuations," International Finance Discussion Papers 1173, Board of Governors of the Federal Reserve System (U.S.).
    18. Hausman, Jerry A & Newey, Whitney K, 1995. "Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss," Econometrica, Econometric Society, vol. 63(6), pages 1445-1476, November.
    19. repec:eee:jimfin:v:88:y:2018:i:c:p:54-78 is not listed on IDEAS
    20. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    21. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    22. Dahl, Carol & Sterner, Thomas, 1991. "Analysing gasoline demand elasticities: a survey," Energy Economics, Elsevier, vol. 13(3), pages 203-210, July.
    23. Kilian, Lutz & Zhou, Xiaoqing, 2018. "Modeling fluctuations in the global demand for commodities," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 54-78.
    24. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    25. Lutz Kilian & Daniel P. Murphy, 2012. "Why Agnostic Sign Restrictions Are Not Enough: Understanding The Dynamics Of Oil Market Var Models," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 1166-1188, October.
    26. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    27. Dermot Gately & Hiliard G. Huntington, 2002. "The Asymmetric Effects of Changes in Price and Income on Energy and Oil Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 19-55.
    28. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    29. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
    30. Drollas, Leonidas P., 1984. "The demand for gasoline : Further evidence," Energy Economics, Elsevier, vol. 6(1), pages 71-82, January.
    31. Amir-Ahmadi, Pooyan & Matthes, Christian & Wang, Mu-Chun, 2017. "Measurement errors and monetary policy: Then and now," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 66-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afees A. Salisu & Rangan Gupta, 2019. "How do Housing Returns in Emerging Countries Respond to Oil Shocks? A MIDAS Touch," Working Papers 201946, University of Pretoria, Department of Economics.
    2. Licht, Adrian & Blazsek, Szabolcs Istvan & Escribano Sáez, Álvaro, 2018. "Seasonal Quasi-Vector Autoregressive Models with an Application to Crude Oil Production and Economic Activity in the United States and Canada," UC3M Working papers. Economics 27484, Universidad Carlos III de Madrid. Departamento de Economía.
    3. Elie Bouri & Riza Demirer & Rangan Gupta & Xiaojin Sun, 2019. "The Predictability of Stock Market Volatility in Emerging Economies: Relative Roles of Local, Regional and Global Business Cycles," Working Papers 201938, University of Pretoria, Department of Economics.
    4. Daniele Valenti, 2018. "Modelling the Global Price of Oil: Is there any Role for the Oil Futures-spot Spread?," Working Papers 2018.06, Fondazione Eni Enrico Mattei.
    5. Baumeister, Christiane & Hamilton, James D., 2018. "Inference in structural vector autoregressions when the identifying assumptions are not fully believed: Re-evaluating the role of monetary policy in economic fluctuations," Journal of Monetary Economics, Elsevier, vol. 100(C), pages 48-65.
    6. Lutz Kilian & Xiaoqing Zhou, 2018. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks: Comment," CESifo Working Paper Series 7166, CESifo Group Munich.
    7. repec:eee:enepol:v:129:y:2019:i:c:p:89-99 is not listed on IDEAS
    8. Kilian, Lutz & Zhou, Xiaoqing, 2018. "Structural Interpretation of Vector Autoregressions with Incomplete Information: Revisiting the Role of Oil Supply and Demand Shocks: Comment," CEPR Discussion Papers 13068, C.E.P.R. Discussion Papers.
    9. repec:eee:enepol:v:129:y:2019:i:c:p:1306-1319 is not listed on IDEAS
    10. repec:eee:moneco:v:103:y:2019:i:c:p:1-20 is not listed on IDEAS
    11. Bao H. NGUYEN & OKIMOTO Tatsuyoshi & Trung Duc TRAN, 2019. "Uncertainty-Dependent and Sign-Dependent Effects of Oil Market Shocks," Discussion papers 19042, Research Institute of Economy, Trade and Industry (RIETI).

    More about this item

    Keywords

    oil prices; vector autoregressions; sign restrictions; Bayesian inference; measurement error;

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_6835. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Klaus Wohlrabe). General contact details of provider: http://edirc.repec.org/data/cesifde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.