IDEAS home Printed from https://ideas.repec.org/p/bno/worpap/2010_18.html
   My bibliography  Save this paper

Oil and US GDP: A real-time out-of-sample examination

Author

Listed:
  • Francesco Ravazzolo

    () (Norges Bank (Central Bank of Norway))

  • Philip Rothman

    () (East Carolina University)

Abstract

We study the real-time Granger-causal relationship between crude oil prices and US GDP growth through a simulated out-of-sample (OOS) forecasting exercise; we also provide strong evidence of in-sample predictability from oil prices to GDP. Comparing our benchmark model "without oil" against alternatives "with oil," we strongly reject the null hypothesis of no OOS predictability from oil prices to GDP via our point forecast comparisons from the mid-1980s through the Great Recession. Further analysis shows that these results may be due to our oil price measures serving as proxies for a recently developed measure of global real economic activity omitted from the alternatives to the benchmark forecasting models in which we only use lags of GDP growth. By way of density forecast OOS comparisons, we find evidence of such oil price predictability for GDP for our full 1970-2009 OOS period. Examination of the density forecasts reveals a massive increase in forecast uncertainty following the 1973 post-Yom Kippur War crude oil price increases.

Suggested Citation

  • Francesco Ravazzolo & Philip Rothman, 2010. "Oil and US GDP: A real-time out-of-sample examination," Working Paper 2010/18, Norges Bank.
  • Handle: RePEc:bno:worpap:2010_18
    as

    Download full text from publisher

    File URL: http://www.norges-bank.no/en/Published/Papers/Working-Papers/2010/WP-201018/
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ravazzolo Francesco & Vahey Shaun P., 2014. "Forecast densities for economic aggregates from disaggregate ensembles," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(4), pages 1-15, September.
    2. Hooker, Mark A., 1996. "This is what happened to the oil price-macroeconomy relationship: Reply," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 221-222, October.
    3. Marianne Sensier & Dick van Dijk, 2004. "Testing for Volatility Changes in U.S. Macroeconomic Time Series," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 833-839, August.
    4. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    5. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    6. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    7. Hamilton, James D., 2011. "Nonlinearities And The Macroeconomic Effects Of Oil Prices," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 364-378, November.
    8. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    9. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    10. Swanson, Norman R., 1998. "Money and output viewed through a rolling window," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 455-474, May.
    11. Hamilton, James D & Herrera, Ana Maria, 2004. "Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy: Comment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(2), pages 265-286, April.
    12. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    13. Clark, Todd E. & McCracken, Michael W., 2015. "Nested forecast model comparisons: A new approach to testing equal accuracy," Journal of Econometrics, Elsevier, vol. 186(1), pages 160-177.
    14. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
    15. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    16. Estrella, Arturo & Hardouvelis, Gikas A, 1991. " The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    17. Lutz Kilian, 2010. "Oil Price Shocks, Monetary Policy and Stagflation," RBA Annual Conference Volume,in: Renée Fry & Callum Jones & Christopher Kent (ed.), Inflation in an Era of Relative Price Shocks Reserve Bank of Australia.
    18. Frederic S. Mishkin, 2009. "Globalization, Macroeconomic Performance, and Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(s1), pages 187-196, February.
    19. Kilian, Lutz & Vigfusson, Robert J., 2011. "Nonlinearities In The Oil Price–Output Relationship," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 337-363, November.
    20. Hamilton, James D, 2001. "A Parametric Approach to Flexible Nonlinear Inference," Econometrica, Econometric Society, vol. 69(3), pages 537-573, May.
    21. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    22. Jon Faust & Jonathan H. Wright, 2007. "Comparing Greenbook and Reduced Form Forecasts using a Large Realtime Dataset," NBER Working Papers 13397, National Bureau of Economic Research, Inc.
    23. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    24. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    25. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, Elsevier.
    26. Bernanke, Ben S & Gertler, Mark & Watson, Mark W, 2004. "Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy: Reply," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(2), pages 287-291, April.
    27. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    28. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
    29. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
    30. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    31. Hooker, Mark A., 1996. "What happened to the oil price-macroeconomy relationship?," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 195-213, October.
    32. Anton Nakov & Andrea Pescatori, 2010. "Oil and the Great Moderation," Economic Journal, Royal Economic Society, vol. 120(543), pages 131-156, March.
    33. Christiane Baumeister & Lutz Kilian, 2011. "Real-Time Forecasts of the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 326-336, September.
    34. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    35. Jane E. Ihrig & Steven B. Kamin & Deborah J. Lindner & Jaime R. Marquez, 2007. "Some simple tests of the globalization and inflation hypothesis," International Finance Discussion Papers 891, Board of Governors of the Federal Reserve System (U.S.).
    36. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    37. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-1167, July.
    38. Lance Bachmeier & Qi Li & Dandan Liu, 2008. "Should Oil Prices Receive So Much Attention? An Evaluation Of The Predictive Power Of Oil Prices For The U.S. Economy," Economic Inquiry, Western Economic Association International, vol. 46(4), pages 528-539, October.
    39. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    40. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    41. Robert B. Barsky & Lutz Kilian, 2004. "Oil and the Macroeconomy Since the 1970s," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 115-134, Fall.
    42. Edelstein, Paul & Kilian, Lutz, 2009. "How sensitive are consumer expenditures to retail energy prices?," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 766-779, September.
    43. Renee Fry & Callum Jones & Christopher Kent, 2010. "Inflation in an Era of Relative Pirce Shocks," CAMA Working Papers 2010-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    44. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    45. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    46. James D. Hamilton, 1985. "Historical Causes of Postwar Oil Shocks and Recessions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 97-116.
    47. Herrera, Ana Maria & Hamilton, James D., 2001. "Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy," University of California at San Diego, Economics Working Paper Series qt4qp0p0v5, Department of Economics, UC San Diego.
    48. Bjornland, Hilde Christiane, 2000. "The Dynamic Effects of Aggregate Demand, Supply and Oil Price Shocks--A Comparative Study," Manchester School, University of Manchester, vol. 68(5), pages 578-607, September.
    49. Robert B. Barsky & Lutz Kilian, 2002. "Do We Really Know that Oil Caused the Great Stagflation? A Monetary Alternative," NBER Chapters,in: NBER Macroeconomics Annual 2001, Volume 16, pages 137-198 National Bureau of Economic Research, Inc.
    50. Leeb, Hannes & P tscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(01), pages 21-59, February.
    51. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
    52. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(02), pages 222-240, April.
    53. Todd E. Clark & Michael W. McCracken, 2010. "Testing for unconditional predictive ability," Working Papers 2010-031, Federal Reserve Bank of St. Louis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Qinbin & Jahan-Parvar, Mohammad R., 2012. "U.S. industry-level returns and oil prices," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 112-128.
    2. Hamilton, James D., 2011. "Nonlinearities And The Macroeconomic Effects Of Oil Prices," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 364-378, November.
    3. Claudio Morana, 2013. "The Oil Price-Macroeconomy Relationship Since the Mid-1980s: A Global Perspective," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    4. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, Elsevier.
    5. Lutz Kilian & Robert J. Vigfusson, 2013. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
    6. John M. Maheu & Yong Song & Qiao Yang, 2018. "Oil Price Shocks and Economic Growth: The Volatility Link," Working Paper series 18-03, Rimini Centre for Economic Analysis.
    7. Granziera, Eleonora & Hubrich, Kirstin & Moon, Hyungsik Roger, 2014. "A predictability test for a small number of nested models," Journal of Econometrics, Elsevier, vol. 182(1), pages 174-185.
    8. Lutz Kilian & Robert J. Vigfusson, 2017. "The Role of Oil Price Shocks in Causing U.S. Recessions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(8), pages 1747-1776, December.
    9. Aramonte, Sirio & Jahan-Parvar, Mohammad & Shugarman, Justin, 2015. "Institutions and return predictability in oil-exporting countries," Finance and Economics Discussion Series 2015-14, Board of Governors of the Federal Reserve System (U.S.).
    10. Florackis, Chris & Giorgioni, Gianluigi & Kostakis, Alexandros & Milas, Costas, 2014. "On stock market illiquidity and real-time GDP growth," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 210-229.
    11. Christiane Baumeister & Lutz Kilian, 2011. "Real-Time Forecasts of the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 326-336, September.
    12. Gaye GENCER & Sercan DEMIRALAY, 2013. "The impact of oil prices on sectoral returns: an empirical analysis from Borsa Istanbul," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(12(589)), pages 7-24, December.
    13. Liu, Li & Ma, Feng & Wang, Yudong, 2015. "Forecasting excess stock returns with crude oil market data," Energy Economics, Elsevier, vol. 48(C), pages 316-324.
    14. James D. Hamilton, 2012. "Oil Prices, Exhaustible Resources, and Economic Growth," NBER Working Papers 17759, National Bureau of Economic Research, Inc.
    15. Ravazzolo Francesco & Rothman Philip, 2016. "Oil-price density forecasts of US GDP," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 441-453, September.
    16. Gürkaynak, Refet S. & Kisacikoglu, Burçin & Rossi, Barbara, 2013. "Do DSGE Models Forecast More Accurately Out-of-Sample than VAR Models?," CEPR Discussion Papers 9576, C.E.P.R. Discussion Papers.
    17. Lise Pichette & Marie-Noëlle Robitaille, 2017. "Assessing the Business Outlook Survey Indicator Using Real-Time Data," Discussion Papers 17-5, Bank of Canada.
    18. Shiyi Chen & Dengke Chen & Wolfgang K. Härdle, 2014. "The Influence of Oil Price Shocks on China’s Macroeconomy : A Perspective of International Trade," SFB 649 Discussion Papers SFB649DP2014-063, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    19. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bno:worpap:2010_18. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nbgovno.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.