IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Tests of Equal Predictive Ability With Real-Time Data

  • Clark, Todd E.
  • McCracken, Michael W.

This paper examines the asymptotic and finite-sample properties of tests of equal forecast accuracy applied to direct, multi-step predictions from both non-nested and nested linear regression models. In contrast to earlier work -- including West (1996), Clark and McCracken (2001, 2005),and McCracken (2006) -- our asymptotics take account of the real-time, revised nature of the data. Monte Carlo simulations indicate that our asymptotic approximations yield reasonable size and power properties in most circumstances. The paper concludes with an examination of the real-time predictive content of various measures of economic activity for inflation.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://pubs.amstat.org/doi/abs/10.1198/jbes.2009.07204
File Function: full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by American Statistical Association in its journal Journal of Business and Economic Statistics.

Volume (Year): 27 (2009)
Issue (Month): 4 ()
Pages: 441-454

as
in new window

Handle: RePEc:bes:jnlbes:v:27:i:4:y:2009:p:441-454
Contact details of provider: Web page: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main

Order Information: Web: http://www.amstat.org/publications/index.html

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tom Stark & Dean Croushore, 2001. "Forecasting with a real-time data set for macroeconomists," Working Papers 01-10, Federal Reserve Bank of Philadelphia.
  2. Evan Koenig & Sheila Dolmas & Jeremy M. Piger, 2002. "The use and abuse of 'real-time' data in economic forecasting," Working Papers 2001-015, Federal Reserve Bank of St. Louis.
  3. Athanasios Orphanides & Simon van Norden, 2003. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," CIRANO Working Papers 2003s-01, CIRANO.
  4. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  5. James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
  6. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
  7. Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
  8. Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
  9. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-19, June.
  10. Raffaella Giacomini & Barbara Rossi, 2009. "Detecting and Predicting Forecast Breakdowns," Review of Economic Studies, Oxford University Press, vol. 76(2), pages 669-705.
  11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  12. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
  13. John C. Robertson & Ellis W. Tallman, 1998. "Data vintages and measuring forecast model performance," Economic Review, Federal Reserve Bank of Atlanta, issue Q 4, pages 4-20.
  14. Todd E. Clark & Michael W. McCracken, 2007. "Tests of equal predictive ability with real-time data," Research Working Paper RWP 07-06, Federal Reserve Bank of Kansas City.
  15. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  16. repec:att:wimass:9417 is not listed on IDEAS
  17. Dean Croushore & Tom Stark, 2003. "A Real-Time Data Set for Macroeconomists: Does the Data Vintage Matter?," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 605-617, August.
  18. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-84, September.
  19. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
  20. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
  21. Barbara Rossi, 2005. "Testing Long-Horizon Predictive Ability With High Persistence, And The Meese-Rogoff Puzzle," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(1), pages 61-92, 02.
  22. repec:att:wimass:9710 is not listed on IDEAS
  23. Howrey, E Philip, 1978. "The Use of Preliminary Data in Econometric Forecasting," The Review of Economics and Statistics, MIT Press, vol. 60(2), pages 193-200, May.
  24. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-33, March.
  25. Swanson, N.R., 1996. "Forecasting Using First Available Versus Fully Revised Economic Time Series data," Papers 4-96-7, Pennsylvania State - Department of Economics.
  26. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
  27. West, Kenneth D & McCracken, Michael W, 1998. "Regression-Based Tests of Predictive Ability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 817-40, November.
  28. Corradi, Valentina & Swanson, Norman R. & Olivetti, Claudia, 2001. "Predictive ability with cointegrated variables," Journal of Econometrics, Elsevier, vol. 104(2), pages 315-358, September.
  29. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, Elsevier.
  30. Aruoba, Boragan, 2005. "Data Revisions Are Not Well-Behaved," CEPR Discussion Papers 5271, C.E.P.R. Discussion Papers.
  31. Chao, John & Corradi, Valentina & Swanson, Norman R., 2001. "Out-Of-Sample Tests For Granger Causality," Macroeconomic Dynamics, Cambridge University Press, vol. 5(04), pages 598-620, September.
  32. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:27:i:4:y:2009:p:441-454. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.