IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

A predictability test for a small number of nested models

  • Granziera, Eleonora
  • Hubrich, Kirstin
  • Moon, Hyungsik Roger

In this paper we introduce Quasi Likelihood Ratio tests for one sided multivariate hypotheses to evaluate the null that a parsimonious model performs equally well as a small number of models which nest the benchmark. We show that the limiting distributions of the test statistics are non standard. For critical values we consider two approaches: (i) bootstrapping and (ii) simulations assuming normality of the mean square prediction error (MSPE) difference. The size and the power performance of the tests are compared via Monte Carlo experiments with existing equal and superior predictive ability tests for multiple model comparison. We find that our proposed tests are well sized for one step ahead as well as for multi-step ahead forecasts when critical values are bootstrapped. The experiments on the power reveal that the superior predictive ability test performs last while the ranking between the quasi likelihood-ratio test and the other equal predictive ability tests depends on the simulation settings. Last, we apply our test to draw conclusions about the predictive ability of a Phillips type curve for the US core inflation. JEL Classification:

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1580.pdf
Download Restriction: no

Paper provided by European Central Bank in its series Working Paper Series with number 1580.

as
in new window

Length:
Date of creation: Aug 2013
Date of revision:
Handle: RePEc:ecb:ecbwps:20131580
Contact details of provider: Postal:
60640 Frankfurt am Main, Germany

Phone: +49 69 1344 0
Fax: +49 69 1344 6000
Web page: http://www.ecb.europa.eu/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, EconWPA.
  2. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  3. Hendry, David F. & Hubrich, Kirstin, 2010. "Combining disaggregate forecasts or combining disaggregate information to forecast an aggregate," Working Paper Series 1155, European Central Bank.
  4. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  5. Todd E. Clark & Kenneth D. West, 2004. "Using out-of-sample mean squared prediction errors to test the Martingale difference hypothesis," Research Working Paper RWP 04-03, Federal Reserve Bank of Kansas City.
  6. Hubrich, Kirstin, 2003. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," Working Paper Series 0247, European Central Bank.
  7. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
  8. Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
  9. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
  10. Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
  11. Francesco Ravazzolo & Philip Rothman, 2010. "Oil and US GDP: A real-time out-of-sample examination," Working Paper 2010/18, Norges Bank.
  12. Kirstin Hubrich & Kenneth D. West, 2008. "Forecast Evaluation of Small Nested Model Sets," NBER Working Papers 14601, National Bureau of Economic Research, Inc.
  13. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-67, July.
  14. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
  15. Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
  16. GONÇALVES, Silvia & KILIAN, Lutz, 2003. "Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form," Cahiers de recherche 2003-01, Universite de Montreal, Departement de sciences economiques.
  17. Andersson, Magnus & D’Agostino, Antonello & de Bondt, Gabe & Roma, Moreno, 2011. "The predictive content of sectoral stock prices: a US-euro area comparison," Working Paper Series 1343, European Central Bank.
  18. Norman Swanson & Valentina Corradi, 2006. "Nonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes," Departmental Working Papers 200618, Rutgers University, Department of Economics.
  19. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  20. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  21. Clark, Todd E. & McCracken, Michael W., 2005. "The power of tests of predictive ability in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 124(1), pages 1-31, January.
  22. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, Elsevier.
  23. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-59, April.
  24. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  25. James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
  26. James H. Stock & Mark W. Watson, 2010. "Modeling Inflation After the Crisis," NBER Working Papers 16488, National Bureau of Economic Research, Inc.
  27. West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
  28. Inoue, Atsushi & Kilian, Lutz, 2002. "In-sample or out-of-sample tests of predictability: which one should we use?," Working Paper Series 0195, European Central Bank.
  29. Chao, John & Corradi, Valentina & Swanson, Norman R., 2001. "Out-Of-Sample Tests For Granger Causality," Macroeconomic Dynamics, Cambridge University Press, vol. 5(04), pages 598-620, September.
  30. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
  31. repec:taf:jnlbes:v:30:y:2012:i:1:p:53-66 is not listed on IDEAS
  32. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
  33. Corradi, V. & Swanson, N.R., 2000. "A Consistent Test for Nonlinear Out of Sample Predictive Accuracy," Discussion Papers 0012, Exeter University, Department of Economics.
  34. Michael Cooper & Huseyin Gulen, 2006. "Is Time-Series-Based Predictability Evident in Real Time?," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1263-1292, May.
  35. Hui Guo, 2006. "On the Out-of-Sample Predictability of Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 79(2), pages 645-670, March.
  36. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20131580. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Official Publications)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.