IDEAS home Printed from https://ideas.repec.org/p/exe/wpaper/0012.html

A Consistent Test for Nonlinear Out of Sample Predictive Accuracy

Author

Listed:
  • Corradi, V.
  • Swanson, N.R.

Abstract

In this paper, we draw on both the consistent specification testing and the predictive ability testing literatures and propose a test for predictive accuracy which is consistent against generic nonlinear alternatives. Broadly speaking, given a particular reference model, assume that the objective is to test whether there exists any alternative model, among an infinite number of alternatives, that has better predictive accuracy than the reference model, for a given loss function. A typical example is the case in which the reference model is a simple autoregressive model and the objective is to check whether a more accurate forecasting model can be constructed by including possibly unknown (non)linear functions of the past of the process or of the past of some other process(es). We propose a statistic which is similar in spirit to that of White (2000), although our approach differs from his as we allow for an infinite number of competing models that may be nested. In addition, we allow for non vanishing parameter estimation error. In order to construct valid asymptotic critical values, we implement a conditional p-value procedure which extends the work of Inoue (1999) by allowing for non vanishing parameter estimation error.

Suggested Citation

  • Corradi, V. & Swanson, N.R., 2000. "A Consistent Test for Nonlinear Out of Sample Predictive Accuracy," Discussion Papers 0012, University of Exeter, Department of Economics.
  • Handle: RePEc:exe:wpaper:0012
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:exe:wpaper:0012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sebastian Kripfganz (email available below). General contact details of provider: https://edirc.repec.org/data/deexeuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.