IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate

  • David F. Hendry
  • Kirstin Hubrich

To forecast an aggregate, we propose adding disaggregate variables, instead of combining forecasts of those disaggregates or forecasting by a univariate aggregate model. New analytical results show the effects of changing coefficients, misspecification, estimation uncertainty, and mismeasurement error. Forecast-origin shifts in parameters affect absolute, but not relative, forecast accuracies; misspecification and estimation uncertainty induce forecast-error differences, which variable-selection procedures or dimension reductions can mitigate. In Monte Carlo simulations, different stochastic structures and interdependencies between disaggregates imply that including disaggregate information in the aggregate model improves forecast accuracy. Our theoretical predictions and simulations are corroborated when forecasting aggregate United States inflation pre and post 1984 using disaggregate sectoral data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1198/jbes.2009.07112
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Journal of Business & Economic Statistics.

Volume (Year): 29 (2011)
Issue (Month): 2 (April)
Pages: 216-227

as
in new window

Handle: RePEc:taf:jnlbes:v:29:y:2011:i:2:p:216-227
Contact details of provider: Web page: http://www.tandfonline.com/UBES20

Order Information: Web: http://www.tandfonline.com/pricing/journal/UBES20

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hubrich, Kirstin, 2003. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," Working Paper Series 0247, European Central Bank.
  2. Hernandez-Murillo, Ruben & Owyang, Michael T., 2006. "The information content of regional employment data for forecasting aggregate conditions," Economics Letters, Elsevier, vol. 90(3), pages 335-339, March.
  3. repec:cup:cbooks:9780521634809 is not listed on IDEAS
  4. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
  5. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  6. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
  7. Raffaella Giacomini & Clive W.J. Granger, 2002. "Aggregation of Space-Time Processes," Boston College Working Papers in Economics 582, Boston College Department of Economics.
  8. Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
  9. Ard Reijer & Peter Vlaar, 2006. "Forecasting Inflation: An Art as Well as a Science!," De Economist, Springer, vol. 154(1), pages 19-40, 03.
  10. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
  11. Kohn, Robert, 1982. "When is an aggregate of a time series efficiently forecast by its past?," Journal of Econometrics, Elsevier, vol. 18(3), pages 337-349, April.
  12. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
  13. James H. Stock & Mark W. Watson, 1994. "Evidence on Structural Instability in Macroeconomic Time Series Relations," NBER Technical Working Papers 0164, National Bureau of Economic Research, Inc.
  14. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, 06.
  15. Todd E. Clark & Michael W. McCracken, 2007. "Forecasting with small macroeconomic VARs in the presence of instabilities," Finance and Economics Discussion Series 2007-41, Board of Governors of the Federal Reserve System (U.S.).
  16. van Garderen, Kees Jan & Lee, Kevin & Pesaran, M. Hashem, 2000. "Cross-sectional aggregation of non-linear models," Journal of Econometrics, Elsevier, vol. 95(2), pages 285-331, April.
  17. Zellner, Arnold & Tobias, Justin, 2004. "A Note on Aggregation, Disaggregation and Forecasting Performance," Staff General Research Papers 12371, Iowa State University, Department of Economics.
  18. James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
  19. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  20. Andrew Atkeson & Lee E. Ohanian., 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-11.
  21. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  22. repec:cup:cbooks:9780521632423 is not listed on IDEAS
  23. Gabriel Moser & Fabio Rumler & Johann Scharler, 2004. "Forecasting Austrian Inflation," Working Papers 91, Oesterreichische Nationalbank (Austrian Central Bank).
  24. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-89, June.
  25. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  26. Massimiliano Marcellino & James H. Stock & Mark W. Watson, . "Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information," Working Papers 201, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  27. Kirstin Hubrich & David F. Hendry, 2005. "Forecasting Aggregates by Disaggregates," Computing in Economics and Finance 2005 270, Society for Computational Economics.
  28. Hubrich, Kirstin & West, Kenneth D., 2009. "Forecast evaluation of small nested model sets," Working Paper Series 1030, European Central Bank.
  29. M. H. Pesaran & R. G. Pierse & M. S. Kumar, 1988. "Econometric Analysis of Aggregation in the Context of Linear Prediction Models," UCLA Economics Working Papers 485, UCLA Department of Economics.
  30. Lutkepohl, Helmut, 1984. "Forecasting Contemporaneously Aggregated Vector ARMA Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 201-14, July.
  31. A. Espasa & E. Senra & R. Albacete, 2002. "Forecasting inflation in the European Monetary Union: A disaggregated approach by countries and by sectors," The European Journal of Finance, Taylor & Francis Journals, vol. 8(4), pages 402-421.
  32. Granger, C. W. J., 1987. "Implications of Aggregation with Common Factors," Econometric Theory, Cambridge University Press, vol. 3(02), pages 208-222, April.
  33. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:29:y:2011:i:2:p:216-227. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.