IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/2004-005.html
   My bibliography  Save this paper

The information content of regional employment data for forecasting aggregate conditions

Author

Listed:
  • Ruben Hernandez-Murillo
  • Michael T. Owyang

Abstract

We consider whether disaggregated data enhances the efficiency of aggregate employment forecasts. We find that incorporating spatial interaction into a disaggregated forecasting model lowers the out-of-sample mean-squared-error from a univariate aggregate model by 70 percent at a two-year horizon.

Suggested Citation

  • Ruben Hernandez-Murillo & Michael T. Owyang, 2004. "The information content of regional employment data for forecasting aggregate conditions," Working Papers 2004-005, Federal Reserve Bank of St. Louis.
  • Handle: RePEc:fip:fedlwp:2004-005
    as

    Download full text from publisher

    File URL: http://research.stlouisfed.org/wp/2004/2004-005.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lutkepohl, Helmut, 1984. "Linear transformations of vector ARMA processes," Journal of Econometrics, Elsevier, vol. 26(3), pages 283-293, December.
    2. Michael T. Owyang & Jeremy Piger & Howard J. Wall, 2005. "Business Cycle Phases in U.S. States," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 604-616, November.
    3. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
    2. Michelle T. Armesto & Ruben Hernandez-Murillo & Michael T. Owyang & Jeremy M. Piger, 2007. "Identifying asymmetry in the language of the Beige Book: a mixed data sampling approach," Working Papers 2007-010, Federal Reserve Bank of St. Louis.
    3. Raffaella Giacomini, 2014. "Economic theory and forecasting: lessons from the literature," CeMMAP working papers CWP41/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. M. Mayor-Fernández & R. Patuelli, 2012. "Short-Run Regional Forecasts: Spatial Models through Varying Cross-Sectional and Temporal Dimensions," Working Papers wp835, Dipartimento Scienze Economiche, Universita' di Bologna.
    5. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    6. Shoesmith, Gary L., 2013. "Space–time autoregressive models and forecasting national, regional and state crime rates," International Journal of Forecasting, Elsevier, vol. 29(1), pages 191-201.
    7. Michael T. Owyang & Jeremy Piger & Howard J. Wall, 2015. "Forecasting National Recessions Using State‐Level Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(5), pages 847-866, August.
    8. Kopoin, Alexandre & Moran, Kevin & Paré, Jean-Pierre, 2013. "Forecasting regional GDP with factor models: How useful are national and international data?," Economics Letters, Elsevier, vol. 121(2), pages 267-270.
    9. Michelle T. Armesto & Rubén Hernández‐Murillo & Michael T. Owyang & Jeremy Piger, 2009. "Measuring the Information Content of the Beige Book: A Mixed Data Sampling Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(1), pages 35-55, February.
    10. Svetlana Borovkova & Hendrik P. Lopuhaä & Budi Nurani Ruchjana, 2008. "Consistency and asymptotic normality of least squares estimators in generalized STAR models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(4), pages 482-508, November.
    11. Giacomini, Raffaella, 2014. "Economic theory and forecasting: lessons from the literature," CEPR Discussion Papers 10201, C.E.P.R. Discussion Papers.
    12. Buda, Rodolphe, 2008. "Estimation de l'emploi régional et sectoriel salarié français : application à l'année 2006 [Estimation of the french salaried regional and sectoral employment: application to the year 2006]," MPRA Paper 34881, University Library of Munich, Germany.
    13. Kausik Chaudhuri & Saumitra N. Bhaduri, 2019. "Inflation Forecast: Just use the Disaggregate or Combine it with the Aggregate," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 331-343, June.
    14. Kristie M. Engemann & Ruben Hernandez-Murillo & Michael T. Owyang, 2011. "Regional aggregation in forecasting: an application to the Federal Reserve’s Eighth District," Review, Federal Reserve Bank of St. Louis, vol. 93(May), pages 207-222.
    15. Cai, Charlie X. & Kyaw, Khine & Zhang, Qi, 2012. "Stock index return forecasting: The information of the constituents," Economics Letters, Elsevier, vol. 116(1), pages 72-74.
    16. Safikhani, Abolfazl & Kamga, Camille & Mudigonda, Sandeep & Faghih, Sabiheh Sadat & Moghimi, Bahman, 2020. "Spatio-temporal modeling of yellow taxi demands in New York City using generalized STAR models," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1138-1148.
    17. Dan S. Rickman & Steven R. Miller & Russell McKenzie, 2009. "Spatial and sectoral linkages in regional models: A Bayesian vector autoregression forecast evaluation," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 29-41, March.

    More about this item

    Keywords

    Econometrics; Forecasting;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2004-005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/frbslus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.