IDEAS home Printed from https://ideas.repec.org/p/iab/iabdpa/200828.html
   My bibliography  Save this paper

Regional unemployment forecasts with spatial interdependencies

Author

Listed:
  • Schanne, Norbert

    (Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany])

  • Wapler, Rüdiger

    () (Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany])

  • Weyh, Antje

    () (Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany])

Abstract

"We forecast unemployment for the 176 German labour-market districts on a monthly basis. Because of their small size, strong spatial interdependencies exist between these regional units. To account for these as well as for the heterogeneity in the regional development over time, we apply different versions of an univariate spatial GVAR model. When comparing the forecast precision with univariate time-series methods, we find that the spatial model does indeed perform better or at least as well. Hence, the GVAR model provides an alternative or complementary approach to commonly used methods in regional forecasting which do not consider regional interdependencies." (Author's abstract, IAB-Doku) ((en))

Suggested Citation

  • Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2008. "Regional unemployment forecasts with spatial interdependencies," IAB Discussion Paper 200828, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
  • Handle: RePEc:iab:iabdpa:200828
    as

    Download full text from publisher

    File URL: http://doku.iab.de/discussionpapers/2008/dp2808.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Uwe Blien, 2006. "New Neural Network Methods for Forecasting Regional Employment: an Analysis of German Labour Markets," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(1), pages 7-30.
    2. Behrens, Kristian & Thisse, Jacques-Francois, 2007. "Regional economics: A new economic geography perspective," Regional Science and Urban Economics, Elsevier, vol. 37(4), pages 457-465, July.
    3. Franses, Philip Hans, 1991. "Seasonality, non-stationarity and the forecasting of monthly time series," International Journal of Forecasting, Elsevier, vol. 7(2), pages 199-208, August.
    4. Oberhofer, Walter & Blien, Uwe & Tassinopoulos, Alexandros, 2000. "Forecasting Regional Employment With A Generalised Extrapolation Method," ERSA conference papers ersa00p170, European Regional Science Association.
    5. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    6. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "The relative efficiencies of various predictors in spatial econometric models containing spatial lags," Regional Science and Urban Economics, Elsevier, vol. 37(3), pages 363-374, May.
    7. [Reference to Proietti], Tommaso, 2000. "Comparing seasonal components for structural time series models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 247-260.
    8. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    9. Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
    10. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    11. Uwe Blien & Alexandros Tassinopoulos, 2001. "Forecasting Regional Employment with the ENTROP Method," Regional Studies, Taylor & Francis Journals, vol. 35(2), pages 113-124.
    12. Michael Beenstock & Daniel Felsenstein, 2007. "Spatial Vector Autoregressions," Spatial Economic Analysis, Taylor & Francis Journals, vol. 2(2), pages 167-196.
    13. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    14. Michael Magura, 1998. "original: IO and spatial information as Bayesian priors in an employment forecasting model," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 32(4), pages 495-503.
    15. Lutkepohl, Helmut, 2006. "Forecasting with VARMA Models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.),Handbook of Economic Forecasting, edition 1, volume 1, chapter 6, pages 287-325, Elsevier.
    16. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    17. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    18. Weller, Barry R., 1989. "National indicator series as quantitative predictors of small region monthly employment levels," International Journal of Forecasting, Elsevier, vol. 5(2), pages 241-247.
    19. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
    20. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
    21. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    22. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    23. Ray, W. D., 1989. "Rates of convergence to steady state for the linear growth version of a dynamic linear model (DLM)," International Journal of Forecasting, Elsevier, vol. 5(4), pages 537-545.
    24. Harvey, Andrew, 2006. "Forecasting with Unobserved Components Time Series Models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.),Handbook of Economic Forecasting, edition 1, volume 1, chapter 7, pages 327-412, Elsevier.
    25. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    26. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.),Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    27. Partridge, Mark D & Rickman, Dan S, 1998. "Generalizing the Bayesian Vector Autoregression Approach for Regional Interindustry Employment Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 62-72, January.
    28. Graham Schindler & Philip Israilevich & Geoffrey Hewings, 1997. "Regional Economic Performance: An Integrated Approach," Regional Studies, Taylor & Francis Journals, vol. 31(2), pages 131-137.
    29. Osborn, Denise R. & Heravi, Saeed & Birchenhall, C. R., 1999. "Seasonal unit roots and forecasts of two-digit European industrial production," International Journal of Forecasting, Elsevier, vol. 15(1), pages 27-47, February.
    30. Hernandez-Murillo, Ruben & Owyang, Michael T., 2006. "The information content of regional employment data for forecasting aggregate conditions," Economics Letters, Elsevier, vol. 90(3), pages 335-339, March.
    31. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
    32. Giuseppe Arbia & Marco Bee & Giuseppe Espa, 2007. "Aggregation of regional economic time series with different spatial correlation structures," Department of Economics Working Papers 0720, Department of Economics, University of Trento, Italia.
    33. Edlund, Per-Olov & Karlsson, Sune, 1993. "Forecasting the Swedish unemployment rate VAR vs. transfer function modelling," International Journal of Forecasting, Elsevier, vol. 9(1), pages 61-76, April.
    34. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    35. Klaus, Joachim & Maußner, Alfred, 1988. "Regionale Arbeitsmarktanalysen mittels vergleichender Arbeitsmarktbilanzen," Mitteilungen aus der Arbeitsmarkt- und Berufsforschung, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 21(1), pages 74-83.
    36. repec:dgr:uvatin:20060020 is not listed on IDEAS
    37. Matias Mayor & Ana Jesus Lopez & Rigoberto Perez, 2007. "Forecasting Regional Employment with Shift-Share and ARIMA Modelling," Regional Studies, Taylor & Francis Journals, vol. 41(4), pages 543-551.
    38. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Arbeitslosigkeit; regionale Verteilung; Arbeitsmarktprognose; regionale Disparität; Prognoseverfahren; Regionalökonomie; regionaler Arbeitsmarkt; Arbeitsagenturbezirke; Prognosegenauigkeit; Prognosemodell;

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iab:iabdpa:200828. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (IAB, Geschäftsbereich Wissenschaftliche Fachinformation und Bibliothek). General contact details of provider: http://edirc.repec.org/data/iabbbde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.