FRED-SD: A Real-Time Database for State-Level Data with Forecasting Applications
Author
Abstract
Suggested Citation
DOI: 10.20955/wp.2020.031
Download full text from publisher
Other versions of this item:
- Bokun, Kathryn O. & Jackson, Laura E. & Kliesen, Kevin L. & Owyang, Michael T., 2023. "FRED-SD: A real-time database for state-level data with forecasting applications," International Journal of Forecasting, Elsevier, vol. 39(1), pages 279-297.
References listed on IDEAS
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005.
"The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
- Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario, 2002. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," CEPR Discussion Papers 3432, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2005. "The generalised dynamic factor model: one sided estimation and forecasting," ULB Institutional Repository 2013/10129, ULB -- Universite Libre de Bruxelles.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Forni M. & Hallin M., 2003. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Computing in Economics and Finance 2003 143, Society for Computational Economics.
- Brayton, Flint & Levin, Andrew & Lyon, Ralph & Williams, John C., 1997.
"The evolution of macro models at the Federal Reserve Board,"
Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 47(1), pages 43-81, December.
- Flint Brayton & Andrew T. Levin & Ralph W. Tryon & John C. Williams, "undated". "The Evolution of Macro Models at the Federal Reserve Board," Finance and Economics Discussion Series 1997-29, Board of Governors of the Federal Reserve System (U.S.), revised 10 Dec 2019.
- Smith, Stephen M. & Gibson, Cosette M., 1988. "Industrial Diversification In Nonmetropolitan Counties And Its Effect On Economic Stability," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 13(2), pages 1-9, December.
- Rapach, David E. & Strauss, Jack K., 2012. "Forecasting US state-level employment growth: An amalgamation approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 315-327.
- LeSage, James P. & Magura, Michael, 1988. "A Regional Payroll Forecasting Model That Uses Bayesian Shrinkage Techniques for Data Pooling," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 18(1), pages 1-17.
- Croushore, Dean & Stark, Tom, 2001.
"A real-time data set for macroeconomists,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
- Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Michael T. Owyang & Jeremy Piger & Howard J. Wall, 2015.
"Forecasting National Recessions Using State‐Level Data,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(5), pages 847-866, August.
- Michael T. Owyang & Jeremy M. Piger & Howard J. Wall, 2012. "Forecasting national recessions using state level data," Working Papers 2012-013, Federal Reserve Bank of St. Louis.
- Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2012. "Forecasting national recessions using state-level data," MPRA Paper 39168, University Library of Munich, Germany.
- Jon R. Miller, 1998. "original: Spatial aggregation and regional economic forecasting," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 32(2), pages 253-266.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Robert Lehmann & Klaus Wohlrabe, 2014.
"Regional economic forecasting: state-of-the-art methodology and future challenges,"
Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 218-231.
- Robert Lehmann & Klaus Wohlrabe, 2014. "Regional Economic Forecasting: State-of-the-Art Methodology and Future Challenge," CESifo Working Paper Series 5145, CESifo.
- Bernanke, Ben S. & Boivin, Jean, 2003.
"Monetary policy in a data-rich environment,"
Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
- Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
- Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
- Laura E. Jackson & Kevin L. Kliesen & Michael T. Owyang, 2015. "A Measure of Price Pressures," Review, Federal Reserve Bank of St. Louis, vol. 97(1), pages 25-52.
- Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003.
"Macroeconomic forecasting in the Euro area: Country specific versus area-wide information,"
European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
- Massimiliano Marcellino & James H. Stock & Mark W. Watson, "undated". "Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information," Working Papers 201, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Jean Boivin & Serena Ng, 2005.
"Understanding and Comparing Factor-Based Forecasts,"
International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
- Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," NBER Working Papers 11285, National Bureau of Economic Research, Inc.
- Boivin, Jean & Ng, Serena, 2005. "Understanding and Comparing Factor-Based Forecasts," MPRA Paper 836, University Library of Munich, Germany.
- Giacomini, Raffaella & Granger, Clive W. J., 2004.
"Aggregation of space-time processes,"
Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
- Giacomini, Raffaella & Granger, Clive W.J., 2001. "Aggregationn of Space-Time Processes," University of California at San Diego, Economics Working Paper Series qt77f76455, Department of Economics, UC San Diego.
- Raffaella Giacomini & Clive W.J. Granger, 2002. "Aggregation of Space-Time Processes," Boston College Working Papers in Economics 582, Boston College Department of Economics.
- repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- James P. LeSage & Zheng Pan, 1995. "Using Spatial Contiguity as Bayesian Prior Information in Regional Forecasting Models," International Regional Science Review, , vol. 18(1), pages 33-53, January.
- Stock, James H & Watson, Mark W, 1996.
"Evidence on Structural Instability in Macroeconomic Time Series Relations,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
- James H. Stock & Mark W. Watson, 1994. "Evidence on Structural Instability in Macroeconomic Time Series Relations," NBER Technical Working Papers 0164, National Bureau of Economic Research, Inc.
- James H. Stock & Mark W. Watson, 1994. "Evidence on structural instability in macroeconomic times series relations," Working Paper Series, Macroeconomic Issues 94-13, Federal Reserve Bank of Chicago.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- David E. Rapach & Jack K. Strauss, 2005. "Forecasting employment growth in Missouri with many potentially relevant predictors: an analysis of forecast combining methods," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 97-112.
- Hernandez-Murillo, Ruben & Owyang, Michael T., 2006.
"The information content of regional employment data for forecasting aggregate conditions,"
Economics Letters, Elsevier, vol. 90(3), pages 335-339, March.
- Ruben Hernandez-Murillo & Michael T. Owyang, 2004. "The information content of regional employment data for forecasting aggregate conditions," Working Papers 2004-005, Federal Reserve Bank of St. Louis.
- James P. LeSage & Daniel Hendrikz, 2019. "Large Bayesian vector autoregressive forecasting for regions: A comparison of methods based on alternative disturbance structures," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 62(3), pages 563-599, June.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Theodore M. Crone & Alan Clayton-Matthews, 2005. "Consistent Economic Indexes for the 50 States," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 593-603, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lehmann, Robert & Wikman, Ida, 2022.
"Quarterly GDP Estimates for the German States,"
MPRA Paper
112642, University Library of Munich, Germany.
- Robert Lehmann & Ida Wikman, 2022. "Quarterly GDP Estimates for the German States," ifo Working Paper Series 370, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Robert Lehmann & Ida Wikman, 2023. "Quarterly GDP Estimates for the German States: New Data for Business Cycle Analyses and Long-Run Dynamics," CESifo Working Paper Series 10280, CESifo.
- Ateeb Akhter Shah Syed & Hassan Raza & Mohsin Waheed, 2023. "Easydata-MD: A Monthly Dataset for Macroeconomic Research on Pakistan," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 28(1), pages 63-88, Jan-June.
- Robert Lehmann, 2023. "READ-GER: Introducing German Real-Time Regional Accounts Data for Revision Analysis and Nowcasting," CESifo Working Paper Series 10315, CESifo.
- Emanuele Bacchiocchi & Andrea Bastianin & Graziano Moramarco, 2024.
"Macroeconomic Spillovers of Weather Shocks across U.S. States,"
Working Papers
2024.09, Fondazione Eni Enrico Mattei.
- Bacchiocchi, Emanuele & Bastianin, Andrea & Moramarco, Graziano, 2024. "Macroeconomic Spillovers of Weather Shocks across U.S. States," FEEM Working Papers 343506, Fondazione Eni Enrico Mattei (FEEM).
- Emanuele Bacchiocchi & Andrea Bastianin & Graziano Moramarco, 2024. "Macroeconomic Spillovers of Weather Shocks across U.S. States," Papers 2403.10907, arXiv.org, revised Apr 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Helmut Lütkepohl, 2014.
"Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey,"
Discussion Papers of DIW Berlin
1351, DIW Berlin, German Institute for Economic Research.
- Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Luciani, Matteo, 2014.
"Forecasting with approximate dynamic factor models: The role of non-pervasive shocks,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
- Matteo Luciani, 2011. "Forecasting with Approximate Dynamic Factor Models: the Role of Non-Pervasive Shocks," Working Papers ECARES ECARES 2011‐022, ULB -- Universite Libre de Bruxelles.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021.
"Macroeconomic data transformations matter,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "Macroeconomic Data Transformations Matter," Working Papers 20-17, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Mar 2021.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "Macroeconomic Data Transformations Matter," Papers 2008.01714, arXiv.org, revised Mar 2021.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2020. "Macroeconomic Data Transformations Matter," CIRANO Working Papers 2020s-42, CIRANO.
- repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
- Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
- Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014.
"Using large data sets to forecast sectoral employment,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working Papers 201101, University of Pretoria, Department of Economics.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working papers 2011-02, University of Connecticut, Department of Economics, revised Aug 2012.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working Papers 1106, University of Nevada, Las Vegas , Department of Economics.
- Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011.
"Forecasting the US real house price index: Structural and non-structural models with and without fundamentals,"
Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 200927, University of Pretoria, Department of Economics.
- Rangan Gupta & Alan Kabundi & Stephen M. Miller, 2010. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 1001, University of Nevada, Las Vegas , Department of Economics.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working papers 2009-42, University of Connecticut, Department of Economics.
- Michael Pfarrhofer, 2024.
"Forecasts with Bayesian vector autoregressions under real time conditions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
- Michael Pfarrhofer, 2020. "Forecasts with Bayesian vector autoregressions under real time conditions," Papers 2004.04984, arXiv.org.
- Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
- Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
- Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017.
"The role of indicator selection in nowcasting euro-area GDP in pseudo-real time,"
Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
- A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019.
"Macroeconomic forecast accuracy in a data‐rich environment,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
- Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic Forecast Accuracy in data-rich environment," Post-Print hal-02435757, HAL.
- Golinelli, Roberto & Parigi, Giuseppe, 2014.
"Tracking world trade and GDP in real time,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
- Roberto Golinelli & Giuseppe Parigi, 2013. "Tracking world trade and GDP in real time," Temi di discussione (Economic working papers) 920, Bank of Italy, Economic Research and International Relations Area.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009.
"Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP,"
Economics Working Papers
ECO2009/13, European University Institute.
- Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "Pooling versus model selection for nowcasting with many predictors: an application to German GDP," Discussion Paper Series 1: Economic Studies 2009,03, Deutsche Bundesbank.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "Pooling versus model selection for nowcasting with many predictors: An application to German GDP," CEPR Discussion Papers 7197, C.E.P.R. Discussion Papers.
- Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018.
"Combined Density Nowcasting in an Uncertain Economic Environment,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an Uncertain Economic Environment," Tinbergen Institute Discussion Papers 14-152/III, Tinbergen Institute.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
- Nii Ayi Armah & Norman Swanson, 2010.
"Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments,"
Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
- Nii Ayi Armah & Norman R. Swanson, 2008. "Seeing inside the black box: Using diffusion index methodology to construct factor proxies in large scale macroeconomic time series environments," Working Papers 08-25, Federal Reserve Bank of Philadelphia.
- Norman R. Swanson & Nii Ayi Armah, 2011. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Largescale Macroeconomic Time Series Environments," Departmental Working Papers 201105, Rutgers University, Department of Economics.
- Raffaella Giacomini & Barbara Rossi, 2015.
"Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
- Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
More about this item
Keywords
factor models; Bayesian VARs; space-time autoregression;All these keywords.
JEL classification:
- C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
- R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FOR-2020-10-05 (Forecasting)
- NEP-GEO-2020-10-05 (Economic Geography)
- NEP-URE-2020-10-05 (Urban and Real Estate Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:88720. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Oates (email available below). General contact details of provider: https://edirc.repec.org/data/frbslus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.