IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Using Large Data Sets to Forecast Sectoral Employment

  • Rangan Gupta

    (University of Pretoria)

  • Alain Kabundi

    (University of Johannesburg)

  • Stephen M. Miller

    (University of Connecticut and University of Nevada, Las Vegas)

  • Josine Uwilingiye

    (University of Johannesburg)

We use several models using Bayesian and classical methods to forecast employment for eight sectors of the US economy. In addition to standard vector-autoregressive and Bayesian vector autoregressive models, we also include the information content of 143 additional monthly series in some models. Several approaches exist for incorporating information from a large number of series. We consider two multivariate approaches – extracting common factors (principle components) and Bayesian shrinkage. After extracting the common factors, we use Bayesian factor-augmented vector autoregressive and vector error-correction models, as well as Bayesian shrinkage in a large-scale Bayesian vector autoregressive models. Using the period of January 1972 to December 1989 as the in-sample period and January 1990 to March 2009 as the out-of-sample horizon, we compare the forecast performance of the alternative models. Finally, we forecast out-of sample from April 2009 through March 2010, using the best forecasting model for each employment series as well as combined forecasts. We find that factor augmented models, especially error-correction versions, generally prove the best in out-of-sample forecast performance, implying that in addition to macroeconomic variables, incorporating long-run relationships along with short-run dynamics play an important role in forecasting employment. Forecast combination models, however, based on the simple average forecasts of the various models used, outperform the best performing individual models for six of the eight sectoral employment series.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://web2.uconn.edu/economics/working/2011-02R.pdf
File Function: Full text (revised version)
Download Restriction: no

File URL: http://web2.uconn.edu/economics/working/2011-02.pdf
File Function: Full text (original version)
Download Restriction: no

Paper provided by University of Connecticut, Department of Economics in its series Working papers with number 2011-02.

as
in new window

Length: 45 pages
Date of creation: Jan 2011
Date of revision: Aug 2012
Handle: RePEc:uct:uconnp:2011-02
Contact details of provider: Postal: University of Connecticut 365 Fairfield Way, Unit 1063 Storrs, CT 06269-1063
Phone: (860) 486-4889
Fax: (860) 486-4463
Web page: http://www.econ.uconn.edu/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2009. "Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models," CEPR Discussion Papers 7446, C.E.P.R. Discussion Papers.
  2. Sonali Das & Rangan Gupta & Alain Kabundi, 2008. "Could We Have Predicted The Recent Downturn In The South African Housing Market?," Working Papers 200831, University of Pretoria, Department of Economics.
  3. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  4. James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
  5. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," CEPR Discussion Papers 3432, C.E.P.R. Discussion Papers.
  6. Rangan Gupta & Alan Kabundi & Stephen M. Miller, 2010. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working Papers 1001, University of Nevada, Las Vegas , Department of Economics.
  7. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  8. Domenico Giannone & Martha Banbura & Lucrezia Reichlin, 2008. "Bayesian VARs with large panels," ULB Institutional Repository 2013/13388, ULB -- Universite Libre de Bruxelles.
  9. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  10. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
  11. Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
  12. Carriero, A. & Kapetanios, G. & Marcellino, M., 2009. "Forecasting exchange rates with a large Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
  13. Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
  14. Zellner, Arnold & Palm, Franz, 1974. "Time series analysis and simultaneous equation econometric models," Journal of Econometrics, Elsevier, vol. 2(1), pages 17-54, May.
  15. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2010. "Forecasting with Factor-augmented Error Correction Models," CEPR Discussion Papers 7677, C.E.P.R. Discussion Papers.
  16. David E. Rapach & Jack K. Strauss, 2005. "Forecasting employment growth in Missouri with many potentially relevant predictors: an analysis of forecast combining methods," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 97-112.
  17. Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
  18. Jushan Bai & Serena Ng, 2001. "A Panic Attack on Unit Roots and Cointegration," Economics Working Paper Archive 469, The Johns Hopkins University,Department of Economics.
  19. Anindya Banerjee & Massimiliano Marcellino, 2008. "Factor-augmented Error Correction Models," Economics Working Papers ECO2008/15, European University Institute.
  20. Rangan Gupta & Stephen M. Miller, 2009. "“Ripple Effects” and Forecasting Home Prices In Los Angeles, Las Vegas, and Phoenix," Working Papers 200901, University of Pretoria, Department of Economics.
  21. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-44, January.
  22. Glennon, Dennis & Lane, Julia & Johnson, Stanley, 1987. "Regional econometric models that reflect labor market relations," International Journal of Forecasting, Elsevier, vol. 3(2), pages 299-312.
  23. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  24. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-80, November.
  25. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  26. Geetesh Bhardwaj & Norman Swanson, 2004. "An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series," Departmental Working Papers 200422, Rutgers University, Department of Economics.
  27. Taylor, Carol A., 1982. "Econometric modeling of urban and other substate areas : An analysis of alternative methodologies," Regional Science and Urban Economics, Elsevier, vol. 12(3), pages 425-448, August.
  28. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
  29. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  30. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  31. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
  32. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," NBER Working Papers 11285, National Bureau of Economic Research, Inc.
  33. David Rapach & Jack Strauss, 2010. "Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 511-533.
  34. Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Fall.
  35. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2010. "Forecasting with Factor-augmented Error Correction," Discussion Papers 09-06r, Department of Economics, University of Birmingham.
  36. David E. Rapach & Jack K. Strauss, 2008. "Forecasting US employment growth using forecast combining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 75-93.
  37. Rapach, David E. & Strauss, Jack K., 2012. "Forecasting US state-level employment growth: An amalgamation approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 315-327.
  38. LeSage, James P, 1990. "A Comparison of the Forecasting Ability of ECM and VAR Models," The Review of Economics and Statistics, MIT Press, vol. 72(4), pages 664-71, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uct:uconnp:2011-02. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Francis Ahking)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.