IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v72y2004i4p1127-1177.html
   My bibliography  Save this article

A PANIC Attack on Unit Roots and Cointegration

Author

Listed:
  • Jushan Bai
  • Serena Ng

Abstract

This paper develops a new methodology that makes use of the factor structure of large dimensional panels to understand the nature of nonstationarity in the data. We refer to it as PANIC-Panel Analysis of Nonstationarity in Idiosyncratic and Common components. PANIC can detect whether the nonstationarity in a series is pervasive, or variable-specific, or both. It can determine the number of independent stochastic trends driving the common factors. PANIC also permits valid pooling of individual statistics and thus panel tests can be constructed. A distinctive feature of PANIC is that it tests the unobserved components of the data instead of the observed series. The key to PANIC is consistent estimation of the space spanned by the unobserved common factors and the idiosyncratic errors without knowing a priori whether these are stationary or integrated processes. We provide a rigorous theory for estimation and inference and show that the tests have good finite sample properties. Copyright The Econometric Society 2004.

Suggested Citation

  • Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
  • Handle: RePEc:ecm:emetrp:v:72:y:2004:i:4:p:1127-1177
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0262.2004.00528.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mark A. Wynne, 2008. "Core inflation: a review of some conceptual issues," Review, Federal Reserve Bank of St. Louis, issue May, pages 205-228.
    2. Michael F. Bryan & Stephen G. Cecchetti, 1993. "The consumer price index as a measure of inflation," Economic Review, Federal Reserve Bank of Cleveland, issue Q IV, pages 15-24.
    3. Quah, Danny, 1994. "Exploiting cross-section variation for unit root inference in dynamic data," Economics Letters, Elsevier, vol. 44(1-2), pages 9-19.
    4. Nyblom, Jukka & Harvey, Andrew, 2000. "Tests Of Common Stochastic Trends," Econometric Theory, Cambridge University Press, vol. 16(02), pages 176-199, April.
    5. Quah, Danny & Vahey, Shaun P, 1995. "Measuring Core Inflation?," Economic Journal, Royal Economic Society, vol. 105(432), pages 1130-1144, September.
    6. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    7. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    8. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    9. Schmidt, Peter & Lee, Junsoo, 1991. "A modification of the Schmidt-Phillips unit root test," Economics Letters, Elsevier, vol. 36(3), pages 285-289, July.
    10. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    11. repec:bla:restud:v:57:y:1990:i:1:p:99-125 is not listed on IDEAS
    12. Gonzalo, Jesus & Granger, Clive W J, 1995. "Estimation of Common Long-Memory Components in Cointegrated Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 27-35, January.
    13. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
    14. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    15. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    16. Anindya Banerjee & Massimiliano Marcellino & Chiara Osbat, 2005. "Testing for PPP: Should we use panel methods?," Empirical Economics, Springer, vol. 30(1), pages 77-91, January.
    17. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    18. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    19. Hansen, Bruce E., 1992. "Efficient estimation and testing of cointegrating vectors in the presence of deterministic trends," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 87-121.
    20. O'Connell, Paul G. J., 1998. "The overvaluation of purchasing power parity," Journal of International Economics, Elsevier, vol. 44(1), pages 1-19, February.
    21. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
    22. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-380, October.
    23. Todd E. Clark, 2001. "Comparing measures of core inflation," Economic Review, Federal Reserve Bank of Kansas City, issue Q II, pages 5-31.
    24. Ng, Serena & Perron, Pierre, 1997. "Estimation and inference in nearly unbalanced nearly cointegrated systems," Journal of Econometrics, Elsevier, vol. 79(1), pages 53-81, July.
    25. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    26. Phillips, Peter C B & Ouliaris, S, 1990. "Asymptotic Properties of Residual Based Tests for Cointegration," Econometrica, Econometric Society, vol. 58(1), pages 165-193, January.
    27. Ireland, Peter N., 1999. "Does the time-consistency problem explain the behavior of inflation in the United States?," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 279-291, October.
    28. MacKinnon, James G, 1994. "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 167-176, April.
    29. Pantula, Sastry G, 1991. "Asymptotic Distributions of Unit-Root Tests When the Process Is Nearly Stationary," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 63-71, January.
    30. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    31. Maddala, G S & Wu, Shaowen, 1999. " A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 631-652, Special I.
    32. Schmidt, Peter & Phillips, C B Peter, 1992. "LM Tests for a Unit Root in the Presence of Deterministic Trends," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 257-287, August.
    33. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:72:y:2004:i:4:p:1127-1177. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.