IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Tests of Common Stochastic Trends

Listed author(s):

This paper is concerned with tests in multivariate time series models made up of random walk (with drift) and stationary components. When the stationary component is white noise, a Lagrange multiplier test of the hypothesis that the covariance matrix of the disturbances driving the multivariate random walk is null is shown to be locally best invariant, something which does not automatically follow in the multivariate case. The main contribution of the paper is to propose a test of the validity of a specified value for the rank of the covariance matrix of the disturbances driving the multi-variate random walk. This rank is equal to the number of common trends, or levels, in the series. The test is very simple insofar as it does not require any models to be estimated, even if serial correlation is present. Its use with real data is illustrated in the context of a stochastic volatility model and the relationship with tests in the co-integration literature is discussed.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Faculty of Economics, University of Cambridge in its series Cambridge Working Papers in Economics with number 9902.

in new window

Date of creation: Jan 1999
Handle: RePEc:cam:camdae:9902
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cam:camdae:9902. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jake Dyer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.