IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/6702.html
   My bibliography  Save this paper

Diffusion Indexes

Author

Listed:
  • James H. Stock
  • Mark W. Watson

Abstract

This paper considers forecasting a single time series using more predictors than there are time series observations. The approach is to construct a relatively few indexes, akin to diffusion indexes, which are weighted averages of the predictors, using an approximate dynamic factor model. Estimation is discussed for balanced and unbalanced panels. The estimated dynamic factors are (uniformly) consistent, even in the presence of time varying parameters and/or data contamination, and forecasts based on the estimated factors are efficient. In an application to forecasting U.S. inflation and industrial production using 224 monthly time series, these forecasts outperform various state-of-the-art benchmark models.

Suggested Citation

  • James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:6702
    Note: EFG
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w6702.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forni, Mario & Reichlin, Lucrezia, 1996. "Dynamic Common Factors in Large Cross-Sections," Empirical Economics, Springer, vol. 21(1), pages 27-42.
    2. Danny Quah & Thomas J. Sargent, 1993. "A Dynamic Index Model for Large Cross Sections," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 285-310, National Bureau of Economic Research, Inc.
    3. Robert J. Gordon, 1997. "The Time-Varying NAIRU and Its Implications for Economic Policy," Journal of Economic Perspectives, American Economic Association, vol. 11(1), pages 11-32, Winter.
    4. Snower,Dennis J. & Dehesa,Guillermo de la (ed.), 1997. "Unemployment Policy," Cambridge Books, Cambridge University Press, number 9780521599214, December.
    5. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    6. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    7. Forni, Mario & Reichlin, Lucrezia, 1997. "National Policies and Local Economies: Europe and the United States," CEPR Discussion Papers 1632, C.E.P.R. Discussion Papers.
    8. Douglas Staiger & James H. Stock & Mark W. Watson, 1997. "The NAIRU, Unemployment and Monetary Policy," Journal of Economic Perspectives, American Economic Association, vol. 11(1), pages 33-49, Winter.
    9. Schneeweiss, H. & Mathes, H., 1995. "Factor Analysis and Principal Components," Journal of Multivariate Analysis, Elsevier, vol. 55(1), pages 105-124, October.
    10. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    11. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    12. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
    13. Forni, Mario & Reichlin, Lucrezia, 1995. "Let's Get Real: A Dynamic Factor Analytical Approach to Disaggregated Business Cycle," CEPR Discussion Papers 1244, C.E.P.R. Discussion Papers.
    14. Bekker, Paul & Dobbelstein, Pascal & Wansbeek, Tom, 1996. "The APT Model as Reduced-Rank Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 199-202, April.
    15. Jeffrey C. Fuhrer, 1995. "The Phillips curve is alive and well," New England Economic Review, Federal Reserve Bank of Boston, issue Mar, pages 41-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, March.
    2. Massimiliano Marcellino & George Kapetanios, 2006. "The Role of Search Frictions and Bargaining for Inflation Dynamics," Working Papers 305, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    3. Reichlin, Lucrezia, 2002. "Factor Models in Large Cross-Sections of Time Series," CEPR Discussion Papers 3285, C.E.P.R. Discussion Papers.
    4. Massimiliano Marcellino & Carlo A. Favero & Francesca Neglia, 2005. "Principal components at work: the empirical analysis of monetary policy with large data sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 603-620.
    5. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    6. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    7. Nii Ayi Armah & Norman Swanson, 2010. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
    8. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    9. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    10. Bork, Lasse, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," Finance Research Group Working Papers F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    11. Douglas Staiger & James H. Stock & Mark W. Watson, 2001. "Prices, Wages and the U.S. NAIRU in the 1990s," NBER Working Papers 8320, National Bureau of Economic Research, Inc.
    12. Volker Wieland, "undated". "Monetary Policy and Uncertainty about the Natural Unemployment Rate," Computing in Economics and Finance 1997 11, Society for Computational Economics.
    13. Norman R. Swanson & Nii Ayi Armah, 2011. "Diffusion Index Models and Index Proxies: Recent Results and New Directions," Departmental Working Papers 201114, Rutgers University, Department of Economics.
    14. Flint Brayton & John M. Roberts & John C. Williams, 1999. "What's happened to the Phillips curve?," Finance and Economics Discussion Series 1999-49, Board of Governors of the Federal Reserve System (U.S.).
    15. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    16. Necati Tekatli, 2007. "Generalized Factor Models: A Bayesian Approach," Working Papers 334, Barcelona Graduate School of Economics.
    17. Borus Jungbacker & Siem Jan Koopman & Michel van der Wel, 0000. "Dynamic Factor Models with Smooth Loadings for Analyzing the Term Structure of Interest Rates," Tinbergen Institute Discussion Papers 09-041/4, Tinbergen Institute, revised 17 Sep 2010.
    18. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    19. Roberto Tatiwa Ferreira & Herman Bierens & Ivan Castelar, 2005. "Forecasting Quarterly Brazilian GDP Growth Rate With Linear and NonLinear Diffusion Index Models," Economia, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics], vol. 6(3), pages 261-292.
    20. George Kapetanios & Massimiliano Marcellino, 2003. "A Comparison of Estimation Methods for Dynamic Factor Models of Large Dimensions," Working Papers 489, Queen Mary University of London, School of Economics and Finance.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:6702. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.