IDEAS home Printed from https://ideas.repec.org/p/fip/fednsr/326.html
   My bibliography  Save this paper

Dynamic factor models with time-varying parameters: measuring changes in international business cycles

Author

Listed:
  • Marco Del Negro
  • Christopher Otrok

Abstract

We develop a dynamic factor model with time-varying factor loadings and stochastic volatility in both the latent factors and idiosyncratic components. We employ this new measurement tool to study the evolution of international business cycles in the post-Bretton Woods period, using a panel of output growth rates for nineteen countries. We find 1) statistical evidence of a decline in volatility for most countries, with the timing, magnitude, and source (international or domestic) of the decline differing across countries; 2) some evidence of a decline in business cycle synchronization for Group of Seven (G-7) countries, but otherwise no evidence of changes in synchronization for the sample countries, including European and euro-area countries; and 3) convergence in the volatility of business cycles across countries.

Suggested Citation

  • Marco Del Negro & Christopher Otrok, 2008. "Dynamic factor models with time-varying parameters: measuring changes in international business cycles," Staff Reports 326, Federal Reserve Bank of New York.
  • Handle: RePEc:fip:fednsr:326
    as

    Download full text from publisher

    File URL: https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr326.html
    Download Restriction: no

    File URL: https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr326.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Brian M. Doyle & Jon Faust, 2005. "Breaks in the Variability and Comovement of G-7 Economic Growth," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 721-740, November.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    3. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    4. Nir Jaimovich & Henry E. Siu, 2009. "The Young, the Old, and the Restless: Demographics and Business Cycle Volatility," American Economic Review, American Economic Association, vol. 99(3), pages 804-826, June.
    5. Danny Quah & Thomas J. Sargent, 1993. "A Dynamic Index Model for Large Cross Sections," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 285-310 National Bureau of Economic Research, Inc.
    6. Diebold, Francis X. & Li, Canlin & Yue, Vivian Z., 2008. "Global yield curve dynamics and interactions: A dynamic Nelson-Siegel approach," Journal of Econometrics, Elsevier, pages 351-363.
    7. Timothy Cogley & Thomas J. Sargent, 2002. "Evolving Post-World War II U.S. Inflation Dynamics," NBER Chapters,in: NBER Macroeconomics Annual 2001, Volume 16, pages 331-388 National Bureau of Economic Research, Inc.
    8. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    9. Heathcote, Jonathan & Perri, Fabrizio, 2004. "Financial globalization and real regionalization," Journal of Economic Theory, Elsevier, vol. 119(1), pages 207-243, November.
    10. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    11. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    12. Otrok, Christopher & Whiteman, Charles H, 1998. "Bayesian Leading Indicators: Measuring and Predicting Economic Conditions in Iowa," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 997-1014, November.
    13. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters,in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230 National Bureau of Economic Research, Inc.
    14. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    15. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    16. Olivier Blanchard & John Simon, 2001. "The Long and Large Decline in U.S. Output Volatility," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 32(1), pages 135-174.
    17. Forni, Mario & Reichlin, Lucrezia, 2001. "Federal policies and local economies: Europe and the US," European Economic Review, Elsevier, vol. 45(1), pages 109-134, January.
    18. James D. Hamilton & Daniel F. Waggoner & Tao Zha, 2007. "Normalization in Econometrics," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 221-252.
    19. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
    20. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
    21. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    22. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    23. Yufeng Han, 2006. "Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model," Review of Financial Studies, Society for Financial Studies, vol. 19(1), pages 237-271.
    24. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    25. James A. Kahn & Margaret M. McConnell & Gabriel Perez-Quiros, 2002. "On the causes of the increased stability of the U.S. economy," Economic Policy Review, Federal Reserve Bank of New York, issue May, pages 183-202.
    26. Altug, Sumru, 1989. "Time-to-Build and Aggregate Fluctuations: Some New Evidence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(4), pages 889-920, November.
    27. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 453-473.
    28. James H. Stock & Mark W. Watson, 2005. "Understanding Changes In International Business Cycle Dynamics," Journal of the European Economic Association, MIT Press, vol. 3(5), pages 968-1006, September.
    29. Haroon Mumtaz & Paolo Surico, 2012. "Evolving International Inflation Dynamics: World And Country-Specific Factors," Journal of the European Economic Association, European Economic Association, vol. 10(4), pages 716-734, August.
    30. Peter M. Summers, 2005. "What caused the Great Moderation? : some cross-country evidence," Economic Review, Federal Reserve Bank of Kansas City, issue Q III, pages 5-32.
    31. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Time-series analysis ; International economic integration ; Business cycles ; Group of Seven countries;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fednsr:326. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Amy Farber). General contact details of provider: http://edirc.repec.org/data/frbnyus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.