IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models

  • Carriero, Andrea
  • Kapetanios, George
  • Marcellino, Massimiliano

The paper addresses the issue of forecasting a large set of variables using multivariate models. In particular, we propose three alternative reduced rank forecasting models and compare their predictive performance for US time series with the most promising existing alternatives, namely, factor models, large scale Bayesian VARs, and multivariate boosting. Specifically, we focus on classical reduced rank regression, a two-step procedure that applies, in turn, shrinkage and reduced rank restrictions, and the reduced rank Bayesian VAR of Geweke (1996). We find that using shrinkage and rank reduction in combination rather than separately improves substantially the accuracy of forecasts, both when the whole set of variables is to be forecast, and for key variables such as industrial production growth, inflation, and the federal funds rate. The robustness of this finding is confirmed by a Monte Carlo experiment based on bootstrapped data. We also provide a consistency result for the reduced rank regression valid when the dimension of the system tends to infinity, which opens the ground to use large scale reduced rank models for empirical analysis.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=7446
Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Paper provided by C.E.P.R. Discussion Papers in its series CEPR Discussion Papers with number 7446.

as
in new window

Length:
Date of creation: Sep 2009
Date of revision:
Handle: RePEc:cpr:ceprdp:7446
Contact details of provider: Postal: Centre for Economic Policy Research, 77 Bastwick Street, London EC1V 3PZ.
Phone: 44 - 20 - 7183 8801
Fax: 44 - 20 - 7183 8820

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
  2. repec:dgr:uvatin:19980025 is not listed on IDEAS
  3. Breitung, Jörg & Eickmeier, Sandra, 2005. "Dynamic factor models," Discussion Paper Series 1: Economic Studies 2005,38, Deutsche Bundesbank, Research Centre.
  4. Kleibergen, F.R. & van Dijk, H.K., 1997. "Bayesian Simultaneous Equations Analysis using Reduced Rank Structures," Econometric Institute Research Papers EI 9714/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  5. Canova, Fabio & Ciccarelli, Matteo, 2001. "Forecasting and Turning Point Predictions in a Bayesian Panel VAR Model," CEPR Discussion Papers 2961, C.E.P.R. Discussion Papers.
  6. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  7. James D. Hamilton & Daniel F. Waggoner & Tao Zha, 2004. "Normalization in econometrics," Working Paper 2004-13, Federal Reserve Bank of Atlanta.
  8. Geweke, John, 1996. "Bayesian reduced rank regression in econometrics," Journal of Econometrics, Elsevier, vol. 75(1), pages 121-146, November.
  9. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
  10. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1986. "Forecasting and conditional projection using realistic prior distribution," Staff Report 93, Federal Reserve Bank of Minneapolis.
  11. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
  12. Frank Kleibergen & Herman K. van Dijk, 1998. "Bayesian Simultaneous Equations Analysis using Reduced Rank Structures," Tinbergen Institute Discussion Papers 98-025/4, Tinbergen Institute.
  13. n/a, 2001. "A Comparison of Personal Sector Saving Rates in the UK, US and Italy," NIESR Discussion Papers 150, National Institute of Economic and Social Research.
  14. Ziegler, Christina & Eickmeier, Sandra, 2006. "How good are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Discussion Paper Series 1: Economic Studies 2006,42, Deutsche Bundesbank, Research Centre.
  15. Pesaran, M.H. & Timmermann, A., 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," Cambridge Working Papers in Economics 0331, Faculty of Economics, University of Cambridge.
  16. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
  17. Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
  18. Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
  19. Kleibergen, Frank & van Dijk, Herman K., 1994. "On the Shape of the Likelihood/Posterior in Cointegration Models," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 514-551, August.
  20. Lutz Kilian & Atsushi Inoue, 2004. "Bagging Time Series Models," Econometric Society 2004 North American Summer Meetings 110, Econometric Society.
  21. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, 07.
  22. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  23. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  24. Camba-Mendez, Gonzalo, et al, 2003. "Tests of Rank in Reduced Rank Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 145-55, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:7446. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

The email address of this maintainer does not seem to be valid anymore. Please ask to update the entry or send us the correct address

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.