IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v14y1998i06p701-743_14.html
   My bibliography  Save this article

Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures

Author

Listed:
  • Kleibergen, Frank
  • van Dijk, Herman K.

Abstract

Diffuse priors lead to pathological posterior behavior when used in Bayesian analyses of Simultaneous Equation Models (SEMs). This results from the local nonidentification of certain parameters in SEMs. When this, a priori known, feature is not captured appropriately, an a posteriori favor for certain specific parameter values results which is not the consequence of strong data information but of local nonidentification. We show that a proper consistent Bayesian analysis of a SEM explicitly has to consider the reduced form of the SEM as a standard linear model on which nonlinear (reduced rank) restrictions are imposed, which result from a singular value decomposition. The priors/posteriors of the parameters of the SEM are therefore proportional to the priors/posteriors of the parameters of the linear model under the condition that the restrictions hold. This leads to a framework for constructing priors and posteriors for the parameters of SEMs. The framework is used to construct priors and posteriors for one, two and three structural equation SEMs. These examples jointly with a theorem, which states that the reduced forms of SEMs accord with sets of reduced rank restrictions on standard linear models, show how Bayesian analyses of generally specified SEMs are conducted.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(06), pages 701-743, December.
  • Handle: RePEc:cup:etheor:v:14:y:1998:i:06:p:701-743_14
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0266466698146017
    File Function: link to article abstract page
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    3. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(02), pages 181-240, August.
    4. Richard, J. -F. & Tompa, H., 1980. "On the evaluation of poly-t density functions," Journal of Econometrics, Elsevier, vol. 12(3), pages 335-351, April.
    5. Kleibergen, Frank & van Dijk, Herman K., 1994. "On the Shape of the Likelihood/Posterior in Cointegration Models," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 514-551, August.
    6. Maddala, G S, 1976. "Weak Priors and Sharp Posteriors in Simultaneous Equation Models," Econometrica, Econometric Society, vol. 44(2), pages 345-351, March.
    7. Geweke, John, 1996. "Bayesian reduced rank regression in econometrics," Journal of Econometrics, Elsevier, vol. 75(1), pages 121-146, November.
    8. Roberts, G. O. & Smith, A. F. M., 1994. "Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms," Stochastic Processes and their Applications, Elsevier, vol. 49(2), pages 207-216, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:14:y:1998:i:06:p:701-743_14. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.