IDEAS home Printed from https://ideas.repec.org/p/sce/scecf4/74.html
   My bibliography  Save this paper

Functional Approximations to Likelihoods/Posterior Densities: A Neural Network Approach to Efficient Sampling

Author

Listed:
  • Lennart F. Hoogerheide
  • Johan F. Kaashoek

Abstract

The performance of Monte Carlo integration methods like importance-sampling or Markov-Chain Monte-Carlo procedures depends greatly on the choice of the importance- or candidate-density. Such a density must typically be "close" to the target density to yield numerically accurate results with efficient sampling. Neural networks are natural importance- or candidate-densities since they have a universal approximation property and are easy to sample from. That is, conditional upon the specified neural network, sampling can be done either directly or using a Gibbs sampling technique, possibly with auxiliary variables. We propose such a class of methods, a key step for which is the construction of a neural network that approximates the target density accurately. The methods are tested on a set of illustrative models that includes a mixture of normal distributions, a Bayesian instrumental-variable regression problem with weak instruments and near-identification, and a two-regime growth model for US recessions and expansions. These examples involve experiments with non-standard, non-elliptical posterior distributions. The results indicate the feasibility of the neural network approach

Suggested Citation

  • Lennart F. Hoogerheide & Johan F. Kaashoek, 2004. "Functional Approximations to Likelihoods/Posterior Densities: A Neural Network Approach to Efficient Sampling," Computing in Economics and Finance 2004 74, Society for Computational Economics.
  • Handle: RePEc:sce:scecf4:74
    as

    Download full text from publisher

    File URL: http://repec.org/sce2004/up.32263.1077032815.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
    3. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    4. Kleibergen, Frank & van Dijk, Herman K., 1994. "On the Shape of the Likelihood/Posterior in Cointegration Models," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 514-551, August.
    5. Richard Paap & Herman K. van Dijk, 1999. "Bayes Estimates of Markov Trends in possibly Cointegrated Series: An Application to US Consumption and Income," Tinbergen Institute Discussion Papers 99-024/4, Tinbergen Institute.
    6. Bauwens, L. & Bos, C.S. & van Dijk, H.K. & van Oest, R.D., 2002. "Adaptive polar sampling, a class of flexibel and robust Monte Carlo integration methods," Econometric Institute Research Papers EI 2002-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
    9. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    10. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    11. van Dijk, Frans & Sonnemans, Joep & van Winden, Frans, 2001. "Incentive systems in a real effort experiment," European Economic Review, Elsevier, pages 187-214.
    12. Luc Bauwens & Charles S. Bos & Herman K. van Dijk & Rutger D. van Oest, 2002. "Adaptive Polar Sampling," Computing in Economics and Finance 2002 307, Society for Computational Economics.
    13. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(06), pages 701-743, December.
    14. repec:cup:etheor:v:12:y:1996:i:3:p:409-31 is not listed on IDEAS
    15. Paap, Richard & van Dijk, Herman K, 2003. "Bayes Estimates of Markov Trends in Possibly Cointegrated Series: An Application to U.S. Consumption and Income," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 547-563, October.
    16. Schotman, Peter & van Dijk, Herman K., 1991. "A Bayesian analysis of the unit root in real exchange rates," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 195-238.
    17. van Dijk, H. K. & Kloek, T., 1980. "Further experience in Bayesian analysis using Monte Carlo integration," Journal of Econometrics, Elsevier, vol. 14(3), pages 307-328, December.
    18. Rombouts, Jeroen V. K. & Bauwens, Luc, 2004. "Econometrics," Papers 2004,33, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
      • BAUWENS, Luc & ROMBOUTS, Jeroen V.K., 2004. "Econometrics," CORE Discussion Papers RP 1713, Universit√© catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Markov chain Monte Carlo; importance sampling; neural networks; Bayesian inference;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf4:74. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sceeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.