IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/13055.html
   My bibliography  Save this paper

Bayesian near-boundary analysis in basic macroeconomic time series models

Author

Listed:
  • de Pooter, M.D.
  • Ravazzolo, F.
  • Segers, R.
  • van Dijk, H.K.

Abstract

Several lessons learnt from a Bayesian analysis of basic macroeconomic time series models are presented for the situation where some model parameters have substantial posterior probability near the boundary of the parameter region. This feature refers to near-instability within dynamic models, to forecasting with near-random walk models and to clustering of several economic series in a small number of groups within a data panel. Two canonical models are used: a linear regression model with autocorrelation and a simple variance components model. Several well-known time series models like unit root and error correction models and further state space and panel data models are shown to be simple generalizations of these two canonical models for the purpose of posterior inference. A Bayesian model averaging procedure is presented in order to deal with models with substantial probability both near and at the boundary of the parameter region. Analytical, graphical and empirical results using U.S. macroeconomic data, in particular on GDP growth, are presented.

Suggested Citation

  • de Pooter, M.D. & Ravazzolo, F. & Segers, R. & van Dijk, H.K., 2008. "Bayesian near-boundary analysis in basic macroeconomic time series models," Econometric Institute Research Papers EI 2008-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:13055
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/13055/EI%20Report%202008%20-%2013.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
    2. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters,in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230 National Bureau of Economic Research, Inc.
    3. Kleibergen, Frank & van Dijk, Herman K., 1994. "On the Shape of the Likelihood/Posterior in Cointegration Models," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 514-551, August.
    4. H.K. van Dijk, 2004. "Twentieth Century Shocks, Trends and Cycles in Industrialized Nations," De Economist, Springer, vol. 152(2), pages 211-232, June.
    5. Robert J. Barro, 1991. "Economic Growth in a Cross Section of Countries," The Quarterly Journal of Economics, Oxford University Press, vol. 106(2), pages 407-443.
    6. Sims, Christopher A & Uhlig, Harald, 1991. "Understanding Unit Rooters: A Helicopter Tour," Econometrica, Econometric Society, vol. 59(6), pages 1591-1599, November.
    7. Quah, Danny, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," CEPR Discussion Papers 1586, C.E.P.R. Discussion Papers.
    8. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, January.
    9. Ravazzolo, F. & van Dijk, H.K. & Verbeek, M.J.C.M., 2007. "Predictive gains from forecast combinations using time-varying model weights," Econometric Institute Research Papers EI 2007-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    11. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    12. Schotman, Peter C & van Dijk, Herman K, 1991. "On Bayesian Routes to Unit Roots," Journal of Applied Econometrics, John Wiley & Sons, Ltd., pages 387-401.
    13. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
    14. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    15. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
    16. de Pooter, M.D. & Segers, R. & van Dijk, H.K., 2006. "Gibbs sampling in econometric practice," Econometric Institute Research Papers EI 2006-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. L. Randall Wray & Stephanie Bell, 2004. "Introduction," Chapters,in: Credit and State Theories of Money, chapter 1 Edward Elgar Publishing.
    18. Hoogerheide, L.F. & van Dijk, H.K., 2001. "Comparison of the Anderson-Rubin test for overidentification and the Johansen test for cointegration," Econometric Institute Research Papers EI 2001-04, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
    20. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    21. Schotman, Peter & van Dijk, Herman K., 1991. "A Bayesian analysis of the unit root in real exchange rates," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 195-238.
    22. Sala-i-Martin, Xavier, 1994. "Cross-sectional regressions and the empirics of economic growth," European Economic Review, Elsevier, vol. 38(3-4), pages 739-747, April.
    23. Harvey, A.C. & Trimbur, T.M. & van Dijk, H.K., 2004. "Bayes estimates of the cyclical component in twentieth centruy US gross domestic product," Econometric Institute Research Papers EI 2004-45, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    24. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    25. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    26. Philippe Robert-Demontrond & R. Ringoot, 2004. "Introduction," Post-Print halshs-00081823, HAL.
    27. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nomen Nescio, 2013. "Nomen Nescio," Tinbergen Institute Discussion Papers 12-095 not issued, Tinbergen Institute.
    2. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    3. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    4. Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010. "Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
    5. Arnold Zellner & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2011. "Instrumental Variables, Errors in Variables, and Simultaneous Equations Models: Applicability and Limitations of Direct Monte Carlo," Tinbergen Institute Discussion Papers 11-137/4, Tinbergen Institute.
    6. Nalan Baştürk & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2016. "Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 1-20, March.
    7. Nalan Basturk & Pinar Ceyhan & Herman K. van Dijk, 2014. "Bayesian Forecasting of US Growth using Basic Time Varying Parameter Models and Expectations Data," Tinbergen Institute Discussion Papers 14-119/III, Tinbergen Institute, revised 14 Sep 2014.
    8. Arnold Zellner & Tomohiro Ando & Nalan Baştük & Lennart Hoogerheide & Herman K. van Dijk, 2014. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 3-35, June.
    9. Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2017. "Macroeconomic Factors Strike Back: A Bayesian Change-Point Model of Time-Varying Risk Exposures and Premia in the U.S. Cross-Section," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 110-129, January.
    10. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    11. repec:gam:jecnmx:v:4:y:2016:i:1:p:11:d:65219 is not listed on IDEAS
    12. Massimo Guidolin & Francesco Ravazzolo & Andrea Donato Tortora, 2011. "A Bayesian multi-factor model of instability in prices and quantities of risk in U.S. financial markets," Working Papers 2011-003, Federal Reserve Bank of St. Louis.
    13. Luo, Sui & Startz, Richard, 2014. "Is it one break or ongoing permanent shocks that explains U.S. real GDP?," Journal of Monetary Economics, Elsevier, vol. 66(C), pages 155-163.

    More about this item

    Keywords

    Bayesian model averaging; Gibbs sampler; MCMC; autocorrelation; error correction models; nonstationarity; random effects panel data models; reduced rank models; state space models;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:13055. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub). General contact details of provider: http://edirc.repec.org/data/feeurnl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.