IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights

  • Lennart Hoogerheide

    (Econometric and Tinbergen Institutes, Erasmus University Rotterdam, The Netherlands)

  • Richard Kleijn

    (PGGM, Zeist, The Netherlands)

  • Francesco Ravazzolo

    (Norges Bank, Oslo, Norway)

  • Herman K. Van Dijk

    (Econometric and Tinbergen Institutes, Erasmus University Rotterdam, The Netherlands)

  • Marno Verbeek

    (Rotterdam School of Management, Erasmus University, Rotterdam, The Netherlands)

Several Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time-varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time series. The results indicate that the proposed time-varying model weight schemes outperform other combination schemes in terms of predictive and economic gains. In an empirical application using returns on the S&P 500 index, time-varying model weights provide improved forecasts with substantial economic gains in an investment strategy including transaction costs. Another empirical example refers to forecasting US economic growth over the business cycle. It suggests that time-varying combination schemes may be very useful in business cycle analysis and forecasting, as these may provide an early indicator for recessions. Copyright © 2009 John Wiley & Sons, Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Link to full text; subscription required
Download Restriction: no

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 29 (2010)
Issue (Month): 1-2 ()
Pages: 251-269

in new window

Handle: RePEc:jof:jforec:v:29:y:2010:i:1-2:p:251-269
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Massimo Guidolin & Allan Timmerman, 2007. "Forecasts of U.S. short-term interest rates: a flexible forecast combination approach," Working Papers 2005-059, Federal Reserve Bank of St. Louis.
  2. Timmermann, Allan G, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
  3. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
  4. David Ardia & Lennart Hoogerheide & Herman K. van Dijk, 2009. "To Bridge, to Warp or to Wrap? A Comparative Study of Monte Carlo Methods for Efficient Evaluation of Marginal Likelihoods," Tinbergen Institute Discussion Papers 09-017/4, Tinbergen Institute.
  5. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, 06.
  6. Ravazzolo, F. & van Dijk, H.K. & Verbeek, M.J.C.M., 2007. "Predictive gains from forecast combinations using time-varying model weights," Econometric Institute Research Papers EI 2007-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  7. Carmen Fernandez & Eduardo Ley & Mark Steel, 2001. "Model uncertainty in cross-country growth regressions," Econometrics 0110002, EconWPA.
  8. Rodney W. Strachan & Herman K. van Dijk, 2008. "Bayesian Averaging over Many Dynamic Model Structures with Evidence on the Great Ratios and Liquidity Trap Risk," Tinbergen Institute Discussion Papers 08-096/4, Tinbergen Institute.
  9. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-time inflation forecasting in a changing world," Staff Reports 388, Federal Reserve Bank of New York.
  10. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
  11. Gernot Doppelhofer & Ronald I. Miller & Xavier Sala-i-Martin, 2000. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," NBER Working Papers 7750, National Bureau of Economic Research, Inc.
  12. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
  13. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  14. Giordani, P. & Kohn, R. & van Dijk, D.J.C., 2005. "A unified approach to nonlinearity, structural change and outliers," Econometric Institute Research Papers EI 2005-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  15. Schotman, Peter & van Dijk, Herman K., 1991. "A Bayesian analysis of the unit root in real exchange rates," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 195-238.
  16. Sven Bouman & Ben Jacobsen, 2002. "The Halloween Indicator, "Sell in May and Go Away": Another Puzzle," American Economic Review, American Economic Association, vol. 92(5), pages 1618-1635, December.
  17. Marquering, Wessel & Verbeek, Marno, 2004. "The Economic Value of Predicting Stock Index Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(02), pages 407-429, June.
  18. Christian Kascha & Francesco Ravazzolo, 2008. "Combining inflation density forecasts," Working Paper 2008/22, Norges Bank.
  19. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, 07.
  20. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-28, September.
  21. Jeff Fleming, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, 02.
  22. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
  23. Carlos Capistrán & Allan Timmermann, 2006. "Forecast Combination with Entry and Exit of Experts," Working Papers 2006-08, Banco de México.
  24. Martin Lettau & Stijn Van Nieuwerburgh, 2006. "Reconciling the Return Predictability Evidence," NBER Working Papers 12109, National Bureau of Economic Research, Inc.
  25. David Ardia & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2010. "A Comparative Study of Monte Carlo Methods for Efficient Evaluation of Marginal Likelihood," Tinbergen Institute Discussion Papers 10-059/4, Tinbergen Institute.
  26. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, 02.
  27. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR 'Fan' Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
  28. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, Elsevier.
  29. de Pooter, M.D. & Ravazzolo, F. & Segers, R. & van Dijk, H.K., 2008. "Bayesian near-boundary analysis in basic macroeconomic time series models," Econometric Institute Research Papers EI 2008-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  30. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," NIESR Discussion Papers 253, National Institute of Economic and Social Research.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:29:y:2010:i:1-2:p:251-269. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.