IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1910.html
   My bibliography  Save this paper

A unified approach to nonlinearity, structural change and outliers

Author

Listed:
  • Giordani, P.
  • Kohn, R.
  • van Dijk, D.J.C.

Abstract

This paper demonstrates that the class of conditionally linear and Gaussian state-space models offers a general and convenient framework for simultaneously handling nonlinearity, structural change and outliers in time series. Many popular nonlinear time series models, including threshold, smooth transition and Markov-Switching models, can be written in state-space form. It is then straightforward to add components that capture parameter instability and intervention effects. We advocate a Bayesian approach to estimation and inference, using an efficient implementation of Markov Chain Monte Carlo sampling schemes for such linear dynamic mixture models. The general modelling framework and the Bayesian methodology are illustrated by means of several examples. An application to quarterly industrial production growth rates for the G7 countries demonstrates the empirical usefulness of the approach.

Suggested Citation

  • Giordani, P. & Kohn, R. & van Dijk, D.J.C., 2005. "A unified approach to nonlinearity, structural change and outliers," Econometric Institute Research Papers EI 2005-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1910
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1910/ei200509.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koop, Gary & Potter, Simon M, 1999. "Dynamic Asymmetries in U.S. Unemployment," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 298-312, July.
    2. Heather M. Anderson & Chin Nam Low, 2004. "Random Walk Smooth Transition Autoregressive Models," Monash Econometrics and Business Statistics Working Papers 22/04, Monash University, Department of Econometrics and Business Statistics, revised May 2005.
    3. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    4. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    5. Lundbergh, Stefan & Terasvirta, Timo & van Dijk, Dick, 2003. "Time-Varying Smooth Transition Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 104-121, January.
    6. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    7. Hess, Gregory D & Iwata, Shigeru, 1997. "Measuring and Comparing Business-Cycle Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 432-444, October.
    8. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    9. James Morley & Jeremy M. Piger, 2005. "The importance of nonlinearity in reproducing business cycle features," Working Papers 2004-032, Federal Reserve Bank of St. Louis.
    10. Francesco Battaglia & Lia Orfei, 2005. "Outlier Detection And Estimation In NonLinear Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(1), pages 107-121, January.
    11. Van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for Smooth Transition Nonlinearity in the Presence of Outliers," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(2), pages 217-235, April.
    12. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    13. James H. Stock & Mark W. Watson, 2005. "Understanding Changes In International Business Cycle Dynamics," Journal of the European Economic Association, MIT Press, vol. 3(5), pages 968-1006, September.
    14. Chang‐Jin Kim & James Morley & Jeremy Piger, 2005. "Nonlinearity and the permanent effects of recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 291-309.
    15. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    16. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    17. Hans-Martin Krolzig & Michael P. Clements, 2002. "Can oil shocks explain asymmetries in the US Business Cycle?," Empirical Economics, Springer, vol. 27(2), pages 185-204.
    18. Harding, Don & Pagan, Adrian, 2003. "A comparison of two business cycle dating methods," Journal of Economic Dynamics and Control, Elsevier, vol. 27(9), pages 1681-1690, July.
    19. Beatriz C. Galvao, Ana, 2002. "Can non-linear time series models generate US business cycle asymmetric shape?," Economics Letters, Elsevier, vol. 77(2), pages 187-194, October.
    20. Dolmas, Jim & Raj, Baldev & Slottje, Daniel J, 1999. "The U.S. Productivity Slowdown: A Peak through the Structural Break Window," Economic Inquiry, Western Economic Association International, vol. 37(2), pages 226-241, April.
    21. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morley James & Piger Jeremy & Tien Pao-Lin, 2013. "Reproducing business cycle features: are nonlinear dynamics a proxy for multivariate information?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 483-498, December.
    2. repec:pit:wpaper:367 is not listed on IDEAS
    3. James Morley & Jeremy Piger & Pao-Lin Tien, 2009. "Reproducing Business Cycle Features: How Important Is Nonlinearity Versus Multivariate Information?," Wesleyan Economics Working Papers 2009-003, Wesleyan University, Department of Economics.
    4. James Morley & Jeremy M. Piger, 2005. "The importance of nonlinearity in reproducing business cycle features," Working Papers 2004-032, Federal Reserve Bank of St. Louis.
    5. Penelope A. Smith & Peter M. Summers, 2005. "How well do Markov switching models describe actual business cycles? The case of synchronization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 253-274.
    6. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, August.
    7. Chang‐Jin Kim & James Morley & Jeremy Piger, 2005. "Nonlinearity and the permanent effects of recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 291-309.
    8. Sinclair Tara M, 2009. "Asymmetry in the Business Cycle: Friedman's Plucking Model with Correlated Innovations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(1), pages 1-31, December.
    9. L.A. Gil-Alana, 2005. "Fractional Cyclical Structures & Business Cycles in the Specification of the US Real Output," European Research Studies Journal, European Research Studies Journal, vol. 0(1-2), pages 99-126.
    10. Lopes, Artur Silva & Zsurkis, Gabriel Florin, 2017. "Are linear models really unuseful to describe business cycle data?," Economics Discussion Papers 2017-5, Kiel Institute for the World Economy (IfW).
    11. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    12. Rodriguez Gabriel, 2007. "Application of Three Alternative Approaches to Identify Business Cycles in Peru," Working Papers 2007-007, Banco Central de Reserva del Perú.
    13. Francis W. Ahking, 2015. "Measuring U.S. Business Cycles: A Comparison of Two Methods and Two Indicators of Economic Activities (With Appendix A)," Working papers 2015-06, University of Connecticut, Department of Economics.
    14. Juergen Bierbaumer-Polly, 2012. "Regional and Sectoral Business Cycles - Key Features for the Austrian economy," EcoMod2012 4074, EcoMod.
    15. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    16. Owyang, Michael T. & Piger, Jeremy M. & Wall, Howard J. & Wheeler, Christopher H., 2008. "The economic performance of cities: A Markov-switching approach," Journal of Urban Economics, Elsevier, vol. 64(3), pages 538-550, November.
    17. Javier De Peña & Luis A. Gil-Alana, 2002. "Do Spanish Stock Market Prices Follow a Random Walk?," Faculty Working Papers 01/02, School of Economics and Business Administration, University of Navarra.
    18. Vitor Castro, 2015. "The Portuguese business cycle: chronology and duration dependence," Empirical Economics, Springer, vol. 49(1), pages 325-342, August.
    19. Viv B. Hall & C. John McDermott, 2006. "The New Zealand Business Cycle: Return To Golden Days?," CAMA Working Papers 2006-21, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    21. Ahking, Francis W., 2014. "Measuring U.S. business cycles: A comparison of two methods and two indicators of economic activities," Journal of Economic and Social Measurement, IOS Press, issue 4, pages 199-216.

    More about this item

    Keywords

    Bayesian inference; Markov-switching models; business cycle asymmetry; state-space models; threshold models;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1910. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.