IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v15y1997i4p432-44.html
   My bibliography  Save this article

Measuring and Comparing Business-Cycle Features

Author

Listed:
  • Hess, Gregory D
  • Iwata, Shigeru

Abstract

Since the extensive work by Burns and Mitchell, many economists have interpreted economic fluctuations in terms of business-cycle phases. Given this, the authors argue that, in addition to usual model-selection criteria currently used in the profession, the adequacy of a univariate macroeconomic time series model should be based on its ability to replicate two important business-cycle features of the U.S. data-duration and amplitude. The authors propose several checks for whether univariate statistical models generate business-cycle features observed in U.S. gross domestic product (GDP) and find that many popular nonlinear models for the log of real GDP are no better at replicating the duration and amplitude features of the data than a simple ARIMA (1, 1, 0).

Suggested Citation

  • Hess, Gregory D & Iwata, Shigeru, 1997. "Measuring and Comparing Business-Cycle Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 432-444, October.
  • Handle: RePEc:bes:jnlbes:v:15:y:1997:i:4:p:432-44
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Lin, Jin-Lung & Tsay, Ruey S, 1996. "Co-integration Constraint and Forecasting: An Empirical Examination," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 519-538, Sept.-Oct.
    2. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    3. Christoffersen, Peter F & Diebold, Francis X, 1996. "Further Results on Forecasting and Model Selection under Asymmetric Loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 561-571, Sept.-Oct.
    4. Granger, Clive W J, 1996. "Can We Improve the Perceived Quality of Economic Forecasts?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 455-473, Sept.-Oct.
    5. Campbell, John Y & Shiller, Robert J, 1987. "Cointegration and Tests of Present Value Models," Journal of Political Economy, University of Chicago Press, vol. 95(5), pages 1062-1088, October.
    6. Clements, M.P. & Hendry, D., 1992. "On the Limitations of Comparing Mean Square Forecast Errors," Economics Series Working Papers 99138, University of Oxford, Department of Economics.
    7. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(06), pages 808-817, December.
    10. Eric Zivot, 1996. "The Power of Single Equation Tests for Cointegration when the Cointegrating Vector is Prespecified," Econometrics 9612001, EconWPA.
    11. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    12. Engle, Robert F. & Yoo, Byung Sam, 1987. "Forecasting and testing in co-integrated systems," Journal of Econometrics, Elsevier, vol. 35(1), pages 143-159, May.
    13. Wickens, Michael R., 1996. "Interpreting cointegrating vectors and common stochastic trends," Journal of Econometrics, Elsevier, vol. 74(2), pages 255-271, October.
    14. Hoffman, Dennis L & Rasche, Robert H, 1996. "Assessing Forecast Performance in a Cointegrated System," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 495-517, Sept.-Oct.
    15. Horvath, Michael T.K. & Watson, Mark W., 1995. "Testing for Cointegration When Some of the Cointegrating Vectors are Prespecified," Econometric Theory, Cambridge University Press, vol. 11(05), pages 984-1014, October.
    16. Clements, M.P. & Hendry, D.F., 1992. "Forecasting in Cointegrated Systems," Economics Series Working Papers 99139, University of Oxford, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:15:y:1997:i:4:p:432-44. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.