IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Nowcasting GDP in real-time: A density combination approach

  • Knut Are Aastveit

    ()

    (Norges Bank (Central Bank of Norway))

  • Karsten R. Gerdrup

    ()

    (Norges Bank (Central Bank of Norway))

  • Anne Sofie Jore

    ()

    (Norges Bank (Central Bank of Norway))

  • Leif Anders Thorsrud

    ()

    (BI Norwegian Business School and Norges Bank (Central Bank of Norway))

In this paper we use U.S. real-time vintage data and produce combined density nowcasts for quarterly GDP growth from a system of three commonly used model classes. The density nowcasts are combined in two steps. First, a wide selection of individual models within each model class are combined separately. Then, the nowcasts from the three model classes are combined into a single predictive density. We update the density nowcast for every new data release throughout the quarter, and highlight the importance of new information for the evaluation period 1990Q2-2010Q3. Our results show that the logarithmic score of the predictive densities for U.S. GDP increase almost monotonically as new information arrives during the quarter. While the best performing model class is changing during the quarter, the density nowcasts from our combination framework is always performing well both in terms of logarithmic scores and calibration tests. The density combination approach is superior to a simple model selection strategy and also performs better in terms of point forecast evaluation than standard point forecast combinations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.norges-bank.no/en/Published/Papers/Working-Papers/2011/WP-201111/
Download Restriction: no

Paper provided by Norges Bank in its series Working Paper with number 2011/11.

as
in new window

Length: 40 pages
Date of creation: 28 Sep 2011
Date of revision:
Handle: RePEc:bno:worpap:2011_11
Contact details of provider: Postal: Postboks 1179 Sentrum, 0107 Oslo
Phone: +47 22 31 60 00
Fax: +47 22 41 31 05
Web page: http://www.norges-bank.no/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Martin D.D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macro Economy," NBER Working Papers 11064, National Bureau of Economic Research, Inc.
  2. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro-area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
  3. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
  4. Angelini, Elena & Camba-Méndez, Gonzalo & Giannone, Domenico & Rünstler, Gerhard & Reichlin, Lucrezia, 2008. "Short-term forecasts of euro area GDP growth," Working Paper Series 0949, European Central Bank.
  5. Domenico Giannone & Lucrezia Reichlin & David Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
  6. Karim Barhoumi & Szilard Benk & Riccardo Cristadoro & Ard Den Reijer & Audrone Jakaitiene & Piotr Jelonek & António Rua & Gerhard Rünstler & Karsten Ruth & Christophe Van Nieuwenhuyze, 2008. "Short-term forecasting of GDP using large monthly datasets - a pseudo real-time forecast evaluation exercise," Occasional Paper Series 84, European Central Bank.
  7. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
  8. repec:nsr:niesrd:342 is not listed on IDEAS
  9. Christian Kascha & Francesco Ravazzolo, 2008. "Combining inflation density forecasts," Working Paper 2008/22, Norges Bank.
  10. Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
  11. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
  12. Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
  13. Todd E. Clark & Michael W. McCracken, 2008. "Improving forecast accuracy by combining recursive and rolling forecasts," Working Papers 2008-028, Federal Reserve Bank of St. Louis.
  14. repec:nsr:niesrd:368 is not listed on IDEAS
  15. S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-Time Measurement of Business Conditions," PIER Working Paper Archive 07-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  16. Geweke, John & Amisano, Gianni, 2009. "Optimal Prediction Pools," Working Paper Series 1017, European Central Bank.
  17. Tom Stark and Dean Croushore, 2001. "Forecasting with a Real-Time Data Set for Macroeconomists," Computing in Economics and Finance 2001 258, Society for Computational Economics.
  18. Garratt, Anthony & Mitchell, James & Vahey, Shaun, 2010. "Measuring Output Gap Uncertainty," CEPR Discussion Papers 7742, C.E.P.R. Discussion Papers.
  19. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
  20. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
  21. Stark, Tom & Croushore, Dean, 2002. "Reply to the comments on 'Forecasting with a real-time data set for macroeconomists'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 563-567, December.
  22. Wolden Bache, Ida & Sofie Jore, Anne & Mitchell, James & Vahey, Shaun P., 2011. "Combining VAR and DSGE forecast densities," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1659-1670, October.
  23. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  24. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
  25. repec:nsr:niesrd:320 is not listed on IDEAS
  26. Hilde C. Bjørnland & Karsten Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2012. "Does Forecast Combination Improve Norges Bank Inflation Forecasts?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 163-179, 04.
  27. repec:hal:journl:hal-00287137 is not listed on IDEAS
  28. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  29. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
  30. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2009. "Short-term forecasting of GDP using large datasets: a pseudo real-time forecast evaluation exercise," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 595-611.
  31. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
  32. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
  33. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bno:worpap:2011_11. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.