IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts

  • Todd E. Clark
  • Michael W. McCracken

This article presents analytical, Monte Carlo, and empirical evidence on combining recursive and rolling forecasts when linear predictive models are subject to structural change. Using a characterization of the bias-variance trade-off faced when choosing between either the recursive and rolling schemes or a scalar convex combination of the two, we derive optimal observation windows and combining weights designed to minimize mean square forecast error. Monte Carlo experiments and several empirical examples indicate that combination can often provide improvements in forecast accuracy relative to forecasts made using the recursive scheme or the rolling scheme with a fixed window width. Copyright � (2009) by the Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association No claim to original US government works .

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1468-2354.2009.00533.x
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association in its journal International Economic Review.

Volume (Year): 50 (2009)
Issue (Month): 2 (05)
Pages: 363-395

as
in new window

Handle: RePEc:ier:iecrev:v:50:y:2009:i:2:p:363-395
Contact details of provider: Postal: 160 McNeil Building, 3718 Locust Walk, Philadelphia, PA 19104-6297
Phone: (215) 898-8487
Fax: (215) 573-2057
Web page: http://www.econ.upenn.edu/ier
Email:


More information through EDIRC

Order Information: Web: http://www.blackwellpublishing.com/subs.asp?ref=0020-6598 Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
  2. In-Koo Cho & Noah Williams & Thomas J. Sargent, 2002. "Escaping Nash Inflation," Review of Economic Studies, Oxford University Press, vol. 69(1), pages 1-40.
  3. Lange, Joe & Sack, Brian & Whitesell, William, 2003. " Anticipations of Monetary Policy in Financial Markets," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 35(6), pages 889-909, December.
  4. Rossi, Barbara & Inoue, Atsushi, 2003. "Recursive Predictability Tests for Real-Time Data," Working Papers 03-24, Duke University, Department of Economics.
  5. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
  6. Estrella, Arturo & Hardouvelis, Gikas A, 1991. " The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-76, June.
  7. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
  8. Robert F. Engle & Aaron D. Smith, 1999. "Stochastic Permanent Breaks," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 553-574, November.
  9. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
  10. John M. Maheu & Stephen Gordon, 2004. "Learning, Forecasting and Structural Breaks," Cahiers de recherche 0422, CIRPEE.
  11. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," CEPR Discussion Papers 4830, C.E.P.R. Discussion Papers.
  12. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  13. Edgerton, David & Wells, Curt, 1994. "Critical Values for the Cusumsq Statistic in Medium and Large Sized Samples," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(3), pages 355-65, August.
  14. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  15. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
  16. William Poole, 2002. "Flation," Speech 49, Federal Reserve Bank of St. Louis.
    • William Poole & Robert H. Rasche, 2002. "Flation," Review, Federal Reserve Bank of St. Louis, issue Nov, pages 1-6.
  17. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
  18. James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
  19. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September.
  20. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
  21. Min, C.K. & Zellner, A., 1992. ""Bayesian and Non-Bayesian Methods for Combining Models and Forecasts with Applications to Forecasting International Growth Rates"," Papers 90-92-23, California Irvine - School of Social Sciences.
  22. Gary Koop & Simon Potter, 2003. "Forecasting in large macroeconomic panels using Bayesian Model Averaging," Staff Reports 163, Federal Reserve Bank of New York.
  23. Hamilton, James Douglas & Kim, Dong Heon, 2000. "A Re-examination of the Predictability of Economic Activity Using the Yield Spread," University of California at San Diego, Economics Working Paper Series qt69v8p1m9, Department of Economics, UC San Diego.
  24. Donald W.K. Andrews, 1990. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Cowles Foundation Discussion Papers 943, Cowles Foundation for Research in Economics, Yale University.
  25. N. Gregory Mankiw & Jeffrey A. Miron, 1985. "The Changing Behavior of the Term Structure of Interest Rates," NBER Working Papers 1669, National Bureau of Economic Research, Inc.
  26. Richard H. Clarida & Mark P. Taylor, 1997. "The Term Structure Of Forward Exchange Premiums And The Forecastability Of Spot Exchange Rates: Correcting The Errors," The Review of Economics and Statistics, MIT Press, vol. 79(3), pages 353-361, August.
  27. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
  28. Paye, Bradley S. & Timmermann, Allan, 2002. "How Stable are Financial Prediction Models? Evidence from US and International Stock Market Data," University of California at San Diego, Economics Working Paper Series qt74v515fr, Department of Economics, UC San Diego.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ier:iecrev:v:50:y:2009:i:2:p:363-395. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.