IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Combining forecasts from nested models

  • Todd E. Clark
  • Michael W. McCracken

Motivated by the common finding that linear autoregressive models often forecast better than models that incorporate additional information, this paper presents analytical, Monte Carlo, and empirical evidence on the effectiveness of combining forecasts from nested models. In our analytics, the unrestricted model is true, but a subset of the coefficients are treated as being local-to-zero. This approach captures the practical reality that the predictive content of variables of interest is often low. We derive MSE-minimizing weights for combining the restricted and unrestricted forecasts. Monte Carlo and empirical analyses verify the practical e effectiveness of our combination approach.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://research.stlouisfed.org/wp/2008/2008-037.pdf
Download Restriction: no

Paper provided by Federal Reserve Bank of St. Louis in its series Working Papers with number 2008-037.

as
in new window

Length:
Date of creation: 2008
Date of revision:
Handle: RePEc:fip:fedlwp:2008-037
Contact details of provider: Postal: P.O. Box 442, St. Louis, MO 63166
Fax: (314)444-8753
Web page: http://www.stlouisfed.org/

More information through EDIRC

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Richard H. Clarida & Mark P. Taylor, 1997. "The Term Structure Of Forward Exchange Premiums And The Forecastability Of Spot Exchange Rates: Correcting The Errors," The Review of Economics and Statistics, MIT Press, vol. 79(3), pages 353-361, August.
  2. David Hendry & Michael Clements, 2001. "Pooling of Forecasts," Economics Series Working Papers 2002-W09, University of Oxford, Department of Economics.
  3. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
  4. Rotemberg, Julio J., 1996. "Prices, output, and hours: An empirical analysis based on a sticky price model," Journal of Monetary Economics, Elsevier, vol. 37(3), pages 505-533, June.
  5. Sune Karlsson & Tor Jacobson, 2004. "Finding good predictors for inflation: a Bayesian model averaging approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 479-496.
  6. Rotemberg, Julio J & Woodford, Michael, 1996. "Real-Business-Cycle Models and the Forecastable Movements in Output, Hours, and Consumption," American Economic Review, American Economic Association, vol. 86(1), pages 71-89, March.
  7. de Jong, Robert M. & Davidson, James, 2000. "The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals I," Econometric Theory, Cambridge University Press, vol. 16(05), pages 621-642, October.
  8. James H. Stock & Mark W. Watson, 1994. "Evidence on structural instability in macroeconomic times series relations," Working Paper Series, Macroeconomic Issues 94-13, Federal Reserve Bank of Chicago.
  9. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, 06.
  10. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  11. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September.
  12. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
  13. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
  14. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-28.
  15. William T. Gavin & Kevin L. Kliesen, 2002. "Unemployment insurance claims and economic activity," Review, Federal Reserve Bank of St. Louis, issue May, pages 15-28.
  16. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
  17. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
  18. repec:cup:etheor:v:8:y:1992:i:4:p:489-500 is not listed on IDEAS
  19. Athanasios Orphanides & Simon van Norden, 2004. "The reliability of inflation forecasts based on output gap estimates in real time," Finance and Economics Discussion Series 2004-68, Board of Governors of the Federal Reserve System (U.S.).
  20. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," NBER Working Papers 11285, National Bureau of Economic Research, Inc.
  21. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
  22. Stephen G. Cecchetti, 1995. "Inflation Indicators and Inflation Policy," NBER Chapters, in: NBER Macroeconomics Annual 1995, Volume 10, pages 189-236 National Bureau of Economic Research, Inc.
  23. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
  24. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
  25. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
  26. Massimiliano Marcellino & James Stock & Mark Watson, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," Working Papers 285, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  27. Todd E. Clark & Kenneth D. West, 2004. "Using out-of-sample mean squared prediction errors to test the Martingale difference hypothesis," Research Working Paper RWP 04-03, Federal Reserve Bank of Kansas City.
  28. James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
  29. Shintani, Mototsugu, 2005. "Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 517-38, June.
  30. Jonas D. M. Fisher & Chin Te Liu & Ruilin Zhou, 2002. "When can we forecast inflation?," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q I, pages 32-44.
  31. John Y. Campbell & Samuel B. Thompson, 2005. "Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?," Harvard Institute of Economic Research Working Papers 2084, Harvard - Institute of Economic Research.
  32. Carmen Fernandez & Eduardo Ley & Mark F.J. Steel, 1998. "Benchmark Priors for Bayesian Model Averaging," Econometrics 9804001, EconWPA, revised 31 Jul 1999.
  33. Scott Brave & Jonas D. M. Fisher, 2004. "In search of a robust inflation forecast," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q IV, pages 12-31.
  34. Andrew Atkeson & Lee E. Ohanian., 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-11.
  35. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  36. Arulampalam, W. & Robin A. Naylor & Jeremy P. Smith, 2002. "University of Warwick," Royal Economic Society Annual Conference 2002 9, Royal Economic Society.
  37. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
  38. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  39. Godfrey, Leslie G. & Orme, Chris D., 2004. "Controlling the finite sample significance levels of heteroskedasticity-robust tests of several linear restrictions on regression coefficients," Economics Letters, Elsevier, vol. 82(2), pages 281-287, February.
  40. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, issue Q1, pages 4-18.
  41. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
  42. Hansen, Bruce E., 1992. "Convergence to Stochastic Integrals for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 8(04), pages 489-500, December.
  43. repec:cup:cbooks:9780521634809 is not listed on IDEAS
  44. Flint Brayton & John M. Roberts & John C. Williams, 1999. "What's happened to the Phillips curve?," Finance and Economics Discussion Series 1999-49, Board of Governors of the Federal Reserve System (U.S.).
  45. Yash P. Mehra, 1990. "Real output and unit labor costs as predictors of inflation," Economic Review, Federal Reserve Bank of Richmond, issue Jul, pages 31-39.
  46. Robert J. Gordon, 1998. "Foundations of the Goldilocks Economy: Supply Shocks and the Time-Varying NAIRU," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 29(2), pages 297-346.
  47. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2008-037. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anna Xiao)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.