IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v123y2018icp390-403.html
   My bibliography  Save this article

Managing electricity price modeling risk via ensemble forecasting: The case of Turkey

Author

Listed:
  • Avci, Ezgi
  • Ketter, Wolfgang
  • van Heck, Eric

Abstract

There are two ways of managing market price risk in electricity day ahead markets, forecasting and hedging. In emerging markets, since hedging possibilities are limited, forecasting becomes the foremost important tool to manage spot price risk. Despite the existence of great diversity of spot price forecasting methods, due to the unique characteristics of electricity as a commodity, there are still three key forecasting challenges that a market participant has to take into account: risk of selection of an inadequate forecasting method and transparency level of the market (availability level of public data) and country-specific multi-seasonality factors. We address these challenges by using a detailed market-level data from the Turkish electricity day-ahead auctions, which is an interesting research setting in that it presents a number of challenges for forecasting. We reveal the key distinguishing features of this market quantitatively which then allow us to propose individual and ensemble forecasting models that are particularly well suited to it. This forecasting study is pioneering for Turkey as it is the very first to focus specifically on electricity spot prices since the country's day-ahead market was established in 2012. We also suggested applicable policy and managerial implications for both regulatory bodies, market makers and participants.

Suggested Citation

  • Avci, Ezgi & Ketter, Wolfgang & van Heck, Eric, 2018. "Managing electricity price modeling risk via ensemble forecasting: The case of Turkey," Energy Policy, Elsevier, vol. 123(C), pages 390-403.
  • Handle: RePEc:eee:enepol:v:123:y:2018:i:c:p:390-403
    DOI: 10.1016/j.enpol.2018.08.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518305834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.08.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haugom, Erik & Ullrich, Carl J., 2012. "Forecasting spot price volatility using the short-term forward curve," Energy Economics, Elsevier, vol. 34(6), pages 1826-1833.
    2. Sandro Sapio, 2004. "Markets Design, Bidding Rules, and Long Memory in Electricity Prices," Revue d'Économie Industrielle, Programme National Persée, vol. 107(1), pages 151-170.
    3. Pawel Maryniak & Rafal Weron, 2014. "Forecasting the occurrence of electricity price spikes in the UK power market," HSC Research Reports HSC/14/11, Hugo Steinhaus Center, Wroclaw University of Technology.
    4. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    5. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    6. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
    7. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    8. Jean Michel Glachant & Marcello Saguan, 2007. "An Institutional Frame to Compare Alternative Market Designs in EU Electricity Balancing," Working Papers EPRG 0711, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. de Menezes, Lilian M. & W. Bunn, Derek & Taylor, James W., 2000. "Review of guidelines for the use of combined forecasts," European Journal of Operational Research, Elsevier, vol. 120(1), pages 190-204, January.
    10. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    11. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    12. Taylor, James W., 2010. "Triple seasonal methods for short-term electricity demand forecasting," European Journal of Operational Research, Elsevier, vol. 204(1), pages 139-152, July.
    13. Bunn, Derek W., 1985. "Statistical efficiency in the linear combination of forecasts," International Journal of Forecasting, Elsevier, vol. 1(2), pages 151-163.
    14. Nils-Henrik M. von der Fehr, 2013. "Transparency in Electricity Markets," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    15. Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014. "An empirical comparison of alternative schemes for combining electricity spot price forecasts," Energy Economics, Elsevier, vol. 46(C), pages 395-412.
    16. Maciejowska, Katarzyna & Nowotarski, Jakub, 2016. "A hybrid model for GEFCom2014 probabilistic electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1051-1056.
    17. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    18. Snyder, Ralph D. & Koehler, Anne B. & Ord, J. Keith, 2002. "Forecasting for inventory control with exponential smoothing," International Journal of Forecasting, Elsevier, vol. 18(1), pages 5-18.
    19. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    20. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    21. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, June.
    22. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    23. Maciejowska, Katarzyna & Nowotarski, Jakub & Weron, Rafał, 2016. "Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging," International Journal of Forecasting, Elsevier, vol. 32(3), pages 957-965.
    24. Huisman, Ronald & Huurman, Christian & Mahieu, Ronald, 2007. "Hourly electricity prices in day-ahead markets," Energy Economics, Elsevier, vol. 29(2), pages 240-248, March.
    25. Gaillard, Pierre & Goude, Yannig & Nedellec, Raphaël, 2016. "Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1038-1050.
    26. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
    27. Alvaro Cartea & Marcelo Figueroa & Helyette Geman, 2009. "Modelling Electricity Prices with Forward Looking Capacity Constraints," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 103-122.
    28. Nowotarski, Jakub & Weron, Rafał, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 57(C), pages 228-235.
    29. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    30. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    31. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    32. J W Taylor & S Majithia, 2000. "Using combined forecasts with changing weights for electricity demand profiling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(1), pages 72-82, January.
    33. Wolfgang Ketter & John Collins & Maria Gini & Alok Gupta & Paul Schrater, 2012. "Real-Time Tactical and Strategic Sales Management for Intelligent Agents Guided by Economic Regimes," Information Systems Research, INFORMS, vol. 23(4), pages 1263-1283, December.
    34. Lisi, Francesco & Nan, Fany, 2014. "Component estimation for electricity prices: Procedures and comparisons," Energy Economics, Elsevier, vol. 44(C), pages 143-159.
    35. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    36. Jean Michel Glachant & Marcelo Saguan, 2007. "An Institutional Frame to Compare Alternative Market Designs in e U Electricity Balancing," Working Papers 0701, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
    37. Karakatsani Nektaria V & Bunn Derek W., 2010. "Fundamental and Behavioural Drivers of Electricity Price Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-42, September.
    38. Adam Misiorek & Rafal Weron, 2006. "Interval forecasting of spot electricity prices," HSC Research Reports HSC/06/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    39. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    40. Chen Zhuo & Yang Yuhong, 2007. "Time Series Models for Forecasting: Testing or Combining?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(1), pages 56-90, March.
    41. Cenktan ÖZYILDIRIM & Mehmet Fuat BEYAZIT, 2014. "Forecasting and Modelling of Electricity Prices by Radial Basis Functions: Turkish Electricity Market Experiment," Iktisat Isletme ve Finans, Bilgesel Yayincilik, vol. 29(344), pages 31-54.
    42. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    43. Spyros Makridakis & Robert L. Winkler, 1983. "Averages of Forecasts: Some Empirical Results," Management Science, INFORMS, vol. 29(9), pages 987-996, September.
    44. Hibon, Michele & Evgeniou, Theodoros, 2005. "To combine or not to combine: selecting among forecasts and their combinations," International Journal of Forecasting, Elsevier, vol. 21(1), pages 15-24.
    45. Avci-Surucu, Ezgi & Aydogan, A. Kursat & Akgul, Doganbey, 2016. "Bidding structure, market efficiency and persistence in a multi-time tariff setting," Energy Economics, Elsevier, vol. 54(C), pages 77-87.
    46. repec:dau:papers:123456789/1433 is not listed on IDEAS
    47. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    48. Dwight B. Crane & James R. Crotty, 1967. "A Two-Stage Forecasting Model: Exponential Smoothing and Multiple Regression," Management Science, INFORMS, vol. 13(8), pages 501-507, April.
    49. Katarzyna Maciejowska, 2014. "Fundamental and speculative shocks, what drives electricity prices?," HSC Research Reports HSC/14/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    50. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    51. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
    52. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
    2. Trespalacios, Alfredo & Cortés, Lina M. & Perote, Javier, 2020. "Uncertainty in electricity markets from a semi-nonparametric approach," Energy Policy, Elsevier, vol. 137(C).
    3. Rodrigo A. de Marcos & Derek W. Bunn & Antonio Bello & Javier Reneses, 2020. "Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks," Energies, MDPI, vol. 13(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014. "An empirical comparison of alternative schemes for combining electricity spot price forecasts," Energy Economics, Elsevier, vol. 46(C), pages 395-412.
    3. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    4. Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.
    5. Florian Ziel & Rafal Weron, 2016. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate models," HSC Research Reports HSC/16/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    6. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    7. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    8. Bartosz Uniejewski & Jakub Nowotarski & Rafał Weron, 2016. "Automated Variable Selection and Shrinkage for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 9(8), pages 1-22, August.
    9. Nowotarski, Jakub & Weron, Rafał, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 57(C), pages 228-235.
    10. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
    11. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
    12. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    13. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2020. "Probabilistic electricity price forecasting with NARX networks: Combine point or probabilistic forecasts?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 466-479.
    14. Grzegorz Marcjasz & Bartosz Uniejewski & Rafal Weron, 2017. "Importance of the long-term seasonal component in day-ahead electricity price forecasting revisited: Neural network models," HSC Research Reports HSC/17/03, Hugo Steinhaus Center, Wroclaw University of Technology.
    15. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    16. Bartosz Uniejewski & Rafał Weron, 2018. "Efficient Forecasting of Electricity Spot Prices with Expert and LASSO Models," Energies, MDPI, vol. 11(8), pages 1-26, August.
    17. Jakub Nowotarski & Rafał Weron, 2015. "Computing electricity spot price prediction intervals using quantile regression and forecast averaging," Computational Statistics, Springer, vol. 30(3), pages 791-803, September.
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
    20. Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:123:y:2018:i:c:p:390-403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.