IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v11y2007i1n3.html
   My bibliography  Save this article

Time Series Models for Forecasting: Testing or Combining?

Author

Listed:
  • Chen Zhuo

    (University of Chicago)

  • Yang Yuhong

    (University of Minnesota)

Abstract

In this paper we systematically compare forecasting accuracy of hypothesis testing procedures with that of a model combining algorithm. Testing procedures are commonly used in applications to select a model, based on which forecasts are made. However, besides the well-known difficulty in dealing with multiple tests, the testing approach has a potentially serious drawback: controlling the probability of Type I error at a conventional level (e.g., 0.05) often excessively favors the null, which can be problematic for the purpose of forecasting. In addition, as shown in this paper, testing procedures can be very unstable, which results in high variability in the forecasts.Selecting a candidate forecast by testing and combining forecasts are both useful but for complementary situations. Currently, there seems to be little guidance in the literature on when combining should be preferred to selecting. We propose instability measures that are helpful for a forecaster to gauge the difficulty in selecting a single optimal forecast.Based on empirical evidences and theoretical considerations, we advocate the use of forecast combining when there is considerable instability in model selection by testing procedures. On the other hand, when there is little instability, testing procedures could work well or even better than forecast combining in terms of forecast accuracy.

Suggested Citation

  • Chen Zhuo & Yang Yuhong, 2007. "Time Series Models for Forecasting: Testing or Combining?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(1), pages 1-37, March.
  • Handle: RePEc:bpj:sndecm:v:11:y:2007:i:1:n:3
    DOI: 10.2202/1558-3708.1385
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1558-3708.1385
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1558-3708.1385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swanson, Norman R & Zeng, Tian, 2001. "Choosing among Competing Econometric Forecasts: Regression-Based Forecast Combination Using Model Selection," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 425-440, September.
    2. Zou, Hui & Yang, Yuhong, 2004. "Combining time series models for forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 69-84.
    3. Li Fuchun & Tkacz Greg, 2004. "Combining Forecasts with Nonparametric Kernel Regressions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(4), pages 1-18, December.
    4. Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(1), pages 176-222, February.
    5. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    6. Yang Y., 2001. "Adaptive Regression by Mixing," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 574-588, June.
    7. Breusch, T S, 1978. "Testing for Autocorrelation in Dynamic Linear Models," Australian Economic Papers, Wiley Blackwell, vol. 17(31), pages 334-355, December.
    8. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    9. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    10. Jon A. Brandt & David A. Bessler, 1981. "Composite Forecasting: An Application with U.S. Hog Prices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 63(1), pages 135-140.
    11. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809.
    12. Graham Elliott & Allan Timmermann, 2005. "Optimal Forecast Combination Under Regime Switching ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1081-1102, November.
    13. Hall, A D & McAleer, Michael, 1989. "A Monte Carlo Study of Some Tests of Model Adequacy in Time Series Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 95-106, January.
    14. Granger, Clive W. J. & King, Maxwell L. & White, Halbert, 1995. "Comments on testing economic theories and the use of model selection criteria," Journal of Econometrics, Elsevier, vol. 67(1), pages 173-187, May.
    15. Pötscher, B.M., 1991. "Effects of Model Selection on Inference," Econometric Theory, Cambridge University Press, vol. 7(2), pages 163-185, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Xiaoqiao & Yang, Yuhong, 2012. "Robust forecast combinations," Journal of Econometrics, Elsevier, vol. 166(2), pages 224-236.
    2. Dimitrios I. Vortelinos & Konstantinos Gkillas, 2018. "Intraday realised volatility forecasting and announcements," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 88-118.
    3. Avci, Ezgi & Ketter, Wolfgang & van Heck, Eric, 2018. "Managing electricity price modeling risk via ensemble forecasting: The case of Turkey," Energy Policy, Elsevier, vol. 123(C), pages 390-403.
    4. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    5. Cheng, Gang & Yang, Yuhong, 2015. "Forecast combination with outlier protection," International Journal of Forecasting, Elsevier, vol. 31(2), pages 223-237.
    6. Sanchez, Ismael, 2006. "Short-term prediction of wind energy production," International Journal of Forecasting, Elsevier, vol. 22(1), pages 43-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
    2. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    3. Joshua Gallin & Randal Verbrugge, 2007. "Improving the CPI’s Age-Bias Adjustment: Leverage, Disaggregation and Model Averaging," Working Papers 411, U.S. Bureau of Labor Statistics.
    4. Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2018. "Quantile forecast combination using stochastic dominance," Empirical Economics, Springer, vol. 55(4), pages 1717-1755, December.
    5. Wei, Xiaoqiao & Yang, Yuhong, 2012. "Robust forecast combinations," Journal of Econometrics, Elsevier, vol. 166(2), pages 224-236.
    6. Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    8. Massimo Guidolin & Carrie Fangzhou Na, 2007. "The economic and statistical value of forecast combinations under regime switching: an application to predictable U.S. returns," Working Papers 2006-059, Federal Reserve Bank of St. Louis.
    9. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    10. Gustavo A. Marrero, 2007. "Traditional versus unobserved components methods to forecast quarterly national account aggregates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 129-153.
    11. Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
    12. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
    13. Stavroula P. Fameliti & Vasiliki D. Skintzi, 2020. "Predictive ability and economic gains from volatility forecast combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 200-219, March.
    14. Zijun Wang, 2010. "Directed graphs, information structure and forecast combinations: an empirical examination of US unemployment rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 353-366.
    15. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    16. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    17. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    18. Pär Österholm, 2009. "Incorporating Judgement in Fan Charts," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(2), pages 387-415, June.
    19. Huiyu Huang & Tae-Hwy Lee, 2010. "To Combine Forecasts or to Combine Information?," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
    20. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 245-264, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:11:y:2007:i:1:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.