IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v22y2006i1p43-56.html
   My bibliography  Save this article

Short-term prediction of wind energy production

Author

Listed:
  • Sanchez, Ismael

Abstract

No abstract is available for this item.

Suggested Citation

  • Sanchez, Ismael, 2006. "Short-term prediction of wind energy production," International Journal of Forecasting, Elsevier, vol. 22(1), pages 43-56.
  • Handle: RePEc:eee:intfor:v:22:y:2006:i:1:p:43-56
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(05)00062-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bianchi, F.D. & Mantz, R.J. & Christiansen, C.F., 2004. "Power regulation in pitch-controlled variable-speed WECS above rated wind speed," Renewable Energy, Elsevier, vol. 29(11), pages 1911-1922.
    2. Chen Zhuo & Yang Yuhong, 2007. "Time Series Models for Forecasting: Testing or Combining?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(1), pages 56-90, March.
    3. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
    4. Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(01), pages 176-222, February.
    5. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    6. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    7. R. Bhansali, 1996. "Asymptotically efficient autoregressive model selection for multistep prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 577-602, September.
    8. Bunn, Derek W., 1985. "Statistical efficiency in the linear combination of forecasts," International Journal of Forecasting, Elsevier, vol. 1(2), pages 151-163.
    9. Kang, In-Bong, 2003. "Multi-period forecasting using different models for different horizons: an application to U.S. economic time series data," International Journal of Forecasting, Elsevier, vol. 19(3), pages 387-400.
    10. J. Vilar-Fernández & J. Vilar-Fernández, 1998. "Recursive Estimation of Regression Functions by Local Polynomial Fitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(4), pages 729-754, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Jing & Guo, Jinmei & Zheng, Songtao, 2012. "Evaluation of hybrid forecasting approaches for wind speed and power generation time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3471-3480.
    2. Sánchez, Ismael, 2008. "Adaptive combination of forecasts with application to wind energy," International Journal of Forecasting, Elsevier, vol. 24(4), pages 679-693.
    3. Poncela, Marta & Poncela, Pilar & Perán, José Ramón, 2013. "Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting," Applied Energy, Elsevier, vol. 108(C), pages 349-362.
    4. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    5. Khalid, M. & Savkin, A.V., 2010. "A model predictive control approach to the problem of wind power smoothing with controlled battery storage," Renewable Energy, Elsevier, vol. 35(7), pages 1520-1526.
    6. Ritter, Matthias & Deckert, Lars, 2017. "Site assessment, turbine selection, and local feed-in tariffs through the wind energy index," Applied Energy, Elsevier, vol. 185(P2), pages 1087-1099.
    7. repec:eee:energy:v:129:y:2017:i:c:p:122-137 is not listed on IDEAS
    8. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
    9. Taylor, James W. & Jeon, Jooyoung, 2015. "Forecasting wind power quantiles using conditional kernel estimation," Renewable Energy, Elsevier, vol. 80(C), pages 370-379.
    10. Pinson, P. & Reikard, G. & Bidlot, J.-R., 2012. "Probabilistic forecasting of the wave energy flux," Applied Energy, Elsevier, vol. 93(C), pages 364-370.
    11. Giwhyun Lee & Yu Ding & Marc G. Genton & Le Xie, 2015. "Power Curve Estimation With Multivariate Environmental Factors for Inland and Offshore Wind Farms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 56-67, March.
    12. Jursa, René & Rohrig, Kurt, 2008. "Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 694-709.
    13. Georgios Anastasiades & Patrick McSharry, 2013. "Quantile Forecasting of Wind Power Using Variability Indices," Energies, MDPI, Open Access Journal, vol. 6(2), pages 1-34, February.
    14. repec:gam:jeners:v:10:y:2017:i:12:p:1988-:d:121516 is not listed on IDEAS
    15. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    16. Pierre-Julien Trombe & Pierre Pinson & Henrik Madsen, 2012. "A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations," Energies, MDPI, Open Access Journal, vol. 5(3), pages 1-37, March.
    17. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    18. Block, C. & Collins, J. & Ketter, W. & Weinhardt, C., 2009. "A Multi-Agent Energy Trading Competition," ERIM Report Series Research in Management ERS-2009-054-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    20. Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
    21. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2013. "Sparse online warped Gaussian process for wind power probabilistic forecasting," Applied Energy, Elsevier, vol. 108(C), pages 410-428.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:22:y:2006:i:1:p:43-56. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.