IDEAS home Printed from
   My bibliography  Save this paper

Averaging Income Distributions


  • Chotikapanich, D.
  • Griffiths, W.E.
  • Rao, D.S.P.


Various inequality and social welfare measures often depend heavily on the choice of a distribution of income. Picking a distribution that best fits the data in some sense involves throwing away information and does not allow for the fact that, by chance, a wrong choice can be made. It also does not allow for the statistical inference implications of making the wrong choice. Instead, Bayesian model averaging utilises a weighted average of the results from a number of income distributions, with each weight given by the probability that a distribution is 'correct'. In this study prior densities are placed on mean income, the mode of income and the Gini coefficient for Australian income units with one parent (1997-98). Then, using grouped sample data on incomes, posterior densities for the mean and mode of income, and the Gini coefficient are derived for a variety of income distributions. The model-averaged results from these income distributions are obtained.

Suggested Citation

  • Chotikapanich, D. & Griffiths, W.E. & Rao, D.S.P., 2001. "Averaging Income Distributions," Department of Economics - Working Papers Series 798, The University of Melbourne.
  • Handle: RePEc:mlb:wpaper:798

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Griffiths, William E & Chotikapanich, Duangkamon, 1997. "Bayesian Methodology for Imposing Inequality Constraints on a Linear Expenditure System with Demographic Factors," Australian Economic Papers, Wiley Blackwell, vol. 36(69), pages 321-341, December.
    2. Danilov, D.L. & Magnus, J.R., 2001. "On the Harm that Pretesting Does," Discussion Paper 2001-37, Tilburg University, Center for Economic Research.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Duangkamon Chotikapanich & William E. Griffiths, 2006. "Bayesian Assessment of Lorenz and Stochastic Dominance in Income Distributions," Department of Economics - Working Papers Series 960, The University of Melbourne.

    More about this item


    Bayesian model averaging; Gini coefficient; grouped data;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mlb:wpaper:798. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dandapani Lokanathan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.