IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.11715.html
   My bibliography  Save this paper

The Gerber-Shiu Expected Discounted Penalty Function: An Application to Poverty Trapping

Author

Listed:
  • Jos'e Miguel Flores-Contr'o

Abstract

In this article, we consider a risk process to model the capital of a household. Our work focuses on the analysis of the trapping time of such a process, where trapping occurs when a household's capital level falls into the poverty area. A function analogous to the classical Gerber-Shiu function is introduced, which incorporates information on the trapping time, the capital surplus immediately before trapping and the capital deficit at trapping. We derive, under some assumptions, a model belonging to the family of generalised beta (GB) distributions that describes the distribution of the capital deficit at trapping given that trapping occurs. Affinities between the capital deficit at trapping and a class of poverty measures, known as the Foster-Greer-Thorbecke (FGT) index, are presented. The versatility of this model to estimate FGT indices is assessed using household microdata from Burkina Faso's Enqu\^ete Multisectorielle Continue (EMC) 2014.

Suggested Citation

  • Jos'e Miguel Flores-Contr'o, 2024. "The Gerber-Shiu Expected Discounted Penalty Function: An Application to Poverty Trapping," Papers 2402.11715, arXiv.org, revised Sep 2024.
  • Handle: RePEc:arx:papers:2402.11715
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.11715
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    2. Paulsen, Jostein, 1998. "Ruin theory with compounding assets -- a survey," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 3-16, May.
    3. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    4. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    5. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    6. David Landriault & Gordon Willmot, 2009. "On the Joint Distributions of the Time to Ruin, the Surplus Prior to Ruin, and the Deficit at Ruin in the Classical Risk Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 252-270.
    7. Salem, A B Z & Mount, T D, 1974. "A Convenient Descriptive Model of Income Distribution: The Gamma Density," Econometrica, Econometric Society, vol. 42(6), pages 1115-1127, November.
    8. James Foster & Joel Greer & Erik Thorbecke, 2010. "The Foster–Greer–Thorbecke (FGT) poverty measures: 25 years later," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 8(4), pages 491-524, December.
    9. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    10. Sen, Amartya K, 1976. "Poverty: An Ordinal Approach to Measurement," Econometrica, Econometric Society, vol. 44(2), pages 219-231, March.
    11. Marsaglia, George & Tsang, Wai Wan & Wang, Jingbo, 2003. "Evaluating Kolmogorov's Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 8(i18).
    12. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 133-152.
    13. Lin, X. Sheldon & Willmot, Gordon E., 1999. "Analysis of a defective renewal equation arising in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 63-84, September.
    14. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    15. Romain Azaïs & Alexandre Genadot, 2015. "Semi-parametric inference for the absorption features of a growth-fragmentation model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 341-360, June.
    16. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    17. Chiu, S. N. & Yin, C. C., 2003. "The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 59-66, August.
    18. Thurow, Lester C, 1970. "Analyzing the American Income Distribution," American Economic Review, American Economic Association, vol. 60(2), pages 261-269, May.
    19. Raimund M. Kovacevic & Georg Ch. Pflug, 2011. "Does Insurance Help to Escape the Poverty Trap?—A Ruin Theoretic Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(4), pages 1003-1028, December.
    20. Monique Graf & Desislava Nedyalkova, 2014. "Modeling of Income and Indicators of Poverty and Social Exclusion Using the Generalized Beta Distribution of the Second Kind," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 821-842, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    2. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    3. Samuel Dastrup & Rachel Hartshorn & James McDonald, 2007. "The impact of taxes and transfer payments on the distribution of income: A parametric comparison," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(3), pages 353-369, December.
    4. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D. S. Prasada Rao, 2018. "Using the GB2 Income Distribution," Econometrics, MDPI, vol. 6(2), pages 1-24, April.
    5. Walter, Paul & Weimer, Katja, 2018. "Estimating poverty and inequality indicators using interval censored income data from the German microcensus," Discussion Papers 2018/10, Free University Berlin, School of Business & Economics.
    6. Boccanfuso, Dorothée & Richard, Patrick & Savard, Luc, 2013. "Parametric and nonparametric income distribution estimators in CGE micro-simulation modeling," Economic Modelling, Elsevier, vol. 35(C), pages 892-899.
    7. Ripsy Bandourian & Robert Turley & James McDonald, 2002. "A Comparison of Parametric Models of Income Distribution across Countries and over Time," LIS Working papers 305, LIS Cross-National Data Center in Luxembourg.
    8. Michał Brzeziński, 2013. "Parametric Modelling of Income Distribution in Central and Eastern Europe," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(3), pages 207-230, September.
    9. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    10. Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
    11. Christophe Muller, 2001. "The Properties of the Watts Poverty Index under Lognormality," Economics Bulletin, AccessEcon, vol. 9(1), pages 1-9.
    12. Feng Zhu, 2005. "A nonparametric analysis of the shape dynamics of the US personal income distribution: 1962-2000," BIS Working Papers 184, Bank for International Settlements.
    13. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D.S. Prasada Rao, 2018. "Using the GB2 Income Distribution: A Review," Department of Economics - Working Papers Series 2036, The University of Melbourne.
    14. Duangkamon Chotikapanich & William Griffiths & Wasana Karunarathne & D.S. Prasada Rao, 2013. "Calculating Poverty Measures from the Generalised Beta Income Distribution," The Economic Record, The Economic Society of Australia, vol. 89, pages 48-66, June.
    15. Ripsy Bandourian, 2000. "Income Distributions: A Comparison across Countries and Time," LIS Working papers 231, LIS Cross-National Data Center in Luxembourg.
    16. J. F. Muñoz & E. à lvarez-Verdejo & R. M. García-Fernández, 2018. "On Estimating the Poverty Gap and the Poverty Severity Indices With Auxiliary Information," Sociological Methods & Research, , vol. 47(3), pages 598-625, August.
    17. Louis Chauvel, 2014. "The Intensity and Shape of Inequality: The ABG Method of Distributional Analysis," LIS Working papers 609, LIS Cross-National Data Center in Luxembourg.
    18. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    19. Kazuhiko Kakamu & Haruhisa Nishino, 2016. "Bayesian Estimation Of Beta-Type Distribution Parameters Based On Grouped Data," Discussion Papers 2016-08, Kobe University, Graduate School of Business Administration.
    20. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2003. "Poverty, Income Distribution and CGE Modeling: Does the Functional Form of Distribution Matter?," Cahiers de recherche 0332, CIRPEE.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.11715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.