IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v20y2004i01p176-222_20.html
   My bibliography  Save this article

Combining Forecasting Procedures: Some Theoretical Results

Author

Listed:
  • Yang, Yuhong

Abstract

We study some methods of combining procedures for forecasting a continuous random variable. Statistical risk bounds under the square error loss are obtained under distributional assumptions on the future given the current outside information and the past observations. The risk bounds show that the combined forecast automatically achieves the best performance among the candidate procedures up to a constant factor and an additive penalty term. In terms of the rate of convergence, the combined forecast performs as well as if the best candidate forecasting procedure were known in advance.Empirical studies suggest that combining procedures can sometimes improve forecasting accuracy over the original procedures. Risk bounds are derived to theoretically quantify the potential gain and price of linearly combining forecasts for improvement. The result supports the empirical finding that it is not automatically a good idea to combine forecasts. Indiscriminate combining can degrade performance dramatically as a result of the large variability in estimating the best combining weights. An automated combining method is shown in theory to achieve a balance between the potential gain and the complexity penalty (the price of combining), to take advantage (if any) of sparse combining, and to maintain the best performance (in rate) among the candidate forecasting procedures if linear or sparse combining does not help.This research was supported by U.S. National Security Agency Grant MDA9049910060 and U.S. National Science Foundation CAREER Grant DMS0094323. The author sincerely thanks three reviewers and Poti Giannakouros for their very valuable comments, which led to a substantial improvement of the paper.

Suggested Citation

  • Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(1), pages 176-222, February.
  • Handle: RePEc:cup:etheor:v:20:y:2004:i:01:p:176-222_20
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466604201086/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:20:y:2004:i:01:p:176-222_20. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: https://www.cambridge.org/ect .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.