IDEAS home Printed from
   My bibliography  Save this article

Choosing among Competing Econometric Forecasts: Regression-Based Forecast Combination Using Model Selection


  • Swanson, Norman R
  • Zeng, Tian


Forecast combination based on a model selection approach is discussed and evaluated. In addition, a combination approach based on ex ante predictive ability is outlined. The model selection approach which we examine is based on the use of Schwarz (SIC) or the Akaike (AIC) Information Criteria. Monte Carlo experiments based on combination forecasts constructed using possibly (misspecified) models suggest that the SIC offers a potentially useful combination approach, and that further investigation is warranted. For example, combination forecasts from a simple averaging approach MSE-dominate SIC combination forecasts less than 25% of the time in most cases, while other "standard" combination approaches fare even worse. Alternative combination approaches are also compared by conducting forecasting experiments using nine US macroeconomic variables. In particular, artificial neural networks (ANN), linear models, and professional forecasts are used to form real-time forecasts of the variables, and it is shown via a series of experiments that SIC, t-statistic, and averaging combination approaches dominate various other combination approaches. An additional finding is that while ANN models may not MSE-dominate simpler linear models, combinations of forecasts from these two models outperform either individual forecast, for a subset of the economic variables examined. Copyright © 2001 by John Wiley & Sons, Ltd.

Suggested Citation

  • Swanson, Norman R & Zeng, Tian, 2001. "Choosing among Competing Econometric Forecasts: Regression-Based Forecast Combination Using Model Selection," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 425-440, September.
  • Handle: RePEc:jof:jforec:v:20:y:2001:i:6:p:425-40

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    1. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    2. John Y. Campbell, 1995. "Some Lessons from the Yield Curve," Journal of Economic Perspectives, American Economic Association, vol. 9(3), pages 129-152, Summer.
    3. Wallace, Myles S & Warner, John T, 1996. "Do Excess Holding-Period Returns Depend on the Composition of Outstanding Federal Debt?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(1), pages 132-139, February.
    4. Franco Modigliani & Richard Sutch, 1967. "Debt Management and the Term Structure of Interest Rates: An Empirical Analysis of Recent Experience," Journal of Political Economy, University of Chicago Press, vol. 75, pages 569-569.
    5. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    6. Friedman, Benjamin M, 1979. "Substitution and Expectation Effects on Long-Term Borrowing Behavior and Long-Term Interest Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 11(2), pages 131-150, May.
    7. Robert J. Shiller & John Y. Campbell & Kermit L. Schoenholtz, 1983. "Forward Rates and Future Policy: Interpreting the Term Structure of Interest Rates," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 14(1), pages 173-224.
    8. Hall, Anthony D & Anderson, Heather M & Granger, Clive W J, 1992. "A Cointegration Analysis of Treasury Bill Yields," The Review of Economics and Statistics, MIT Press, vol. 74(1), pages 116-126, February.
    9. Friedman, Benjamin M & Kuttner, Kenneth N, 1992. "Time-Varying Risk Perceptions and the Pricing of Risky Assets," Oxford Economic Papers, Oxford University Press, vol. 44(4), pages 566-598, October.
    10. Hardouvelis, Gikas A., 1994. "The term structure spread and future changes in long and short rates in the G7 countries: Is there a puzzle?," Journal of Monetary Economics, Elsevier, vol. 33(2), pages 255-283, April.
    11. Jones, David S. & Vance Roley, V., 1983. "Rational expectations and the expectations model of the term structure : A test using weekly data," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 453-465, September.
    12. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
    13. V. Vance Roley, 1982. "The Effect of Federal Debt-Management Policy on Corporate Bond and Equity Yields," The Quarterly Journal of Economics, Oxford University Press, vol. 97(4), pages 645-668.
    14. Evans, Martin D. D. & Lewis, Karen K., 1994. "Do stationary risk premia explain it all?: Evidence from the term structure," Journal of Monetary Economics, Elsevier, vol. 33(2), pages 285-318, April.
    15. Granger, Clive W. J. & King, Maxwell L. & White, Halbert, 1995. "Comments on testing economic theories and the use of model selection criteria," Journal of Econometrics, Elsevier, vol. 67(1), pages 173-187, May.
    16. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
    2. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    3. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    4. García-Martos, Carolina & Bastos, Guadalupe & Alonso Fernández, Andrés Modesto, 2017. "Electricity prices forecasting by averaging dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS 24028, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Andrés M. Alonso & Guadalupe Bastos & Carolina García-Martos, 2016. "Electricity Price Forecasting by Averaging Dynamic Factor Models," Energies, MDPI, Open Access Journal, vol. 9(8), pages 1-21, July.
    6. Zijun Wang, 2010. "Directed graphs, information structure and forecast combinations: an empirical examination of US unemployment rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 353-366.
    7. David Jamieson Bolder & Yuliya Romanyuk, 2008. "Combining Canadian Interest-Rate Forecasts," Staff Working Papers 08-34, Bank of Canada.
    8. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    9. Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013. "Short-term inflation forecasting models for Turkey and a forecast combination analysis," Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
    10. David E. Rapach & Jack K. Strauss, 2008. "Forecasting US employment growth using forecast combining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 75-93.
    11. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    12. Sarno, Lucio & Thornton, Daniel L & Valente, Giorgio, 2005. "Federal Funds Rate Prediction," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 449-471, June.
    13. Joshua Gallin & Randal Verbrugge, 2007. "Improving the CPI’s Age-Bias Adjustment: Leverage, Disaggregation and Model Averaging," Working Papers 411, U.S. Bureau of Labor Statistics.
    14. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    15. Antonis Michis, 2012. "Monitoring Forecasting Combinations with Semiparametric Regression Models," Working Papers 2012-02, Central Bank of Cyprus.
    16. Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
    17. Hsiao, Cheng & Wan, Shui Ki, 2011. "Comparison of forecasting methods with an application to predicting excess equity premium," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1235-1246.
    18. Li Fuchun & Tkacz Greg, 2004. "Combining Forecasts with Nonparametric Kernel Regressions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(4), pages 1-18, December.
    19. Gustavo A. Marrero, 2007. "Traditional versus unobserved components methods to forecast quarterly national account aggregates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 129-153.
    20. Jing Zeng, 2016. "Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 43(2), pages 415-444, May.
    21. Chen Zhuo & Yang Yuhong, 2007. "Time Series Models for Forecasting: Testing or Combining?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(1), pages 56-90, March.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:20:y:2001:i:6:p:425-40. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.