IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v7y2004i1p1-31.html
   My bibliography  Save this article

Pooling of forecasts

Author

Listed:
  • David F. Hendry
  • Michael P. Clements

Abstract

We consider forecasting using a combination, when no model coincides with a non-constant data generation process (DGP). Practical experience suggests that combining forecasts adds value, and can even dominate the best individual device. We show why this can occur when forecasting models are differentially mis-specified, and is likely to occur when the DGP is subject to location shifts. Moreover, averaging may then dominate over estimated weights in the combination. Finally, it cannot be proved that only non-encompassed devices should be retained in the combination. Empirical and Monte Carlo illustrations confirm the analysis. Copyright Royal Economic Socciety 2004

Suggested Citation

  • David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
  • Handle: RePEc:ect:emjrnl:v:7:y:2004:i:1:p:1-31
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    2. Clements, M.P. & Hendry, D., 1992. "On the Limitations of Comparing Mean Square Forecast Errors," Economics Series Working Papers 99138, University of Oxford, Department of Economics.
    3. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    4. Ericsson, Neil R & Marquez, Jaime, 1993. "Encompassing the Forecasts of U.S. Trade Balance Models," The Review of Economics and Statistics, MIT Press, vol. 75(1), pages 19-31, February.
    5. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    6. Diebold, Francis X., 1989. "Forecast combination and encompassing: Reconciling two divergent literatures," International Journal of Forecasting, Elsevier, vol. 5(4), pages 589-592.
    7. Coulson, N.E. & Robins, R.P., 1989. "Forecast Combination In A Dynamic Setting," Papers 8-88-4, Pennsylvania State - Department of Economics.
    8. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
    9. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    10. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    11. Hendry, David F., 2000. "On detectable and non-detectable structural change," Structural Change and Economic Dynamics, Elsevier, vol. 11(1-2), pages 45-65, July.
    12. Diebold, Francis X, 1988. "Serial Correlation and the Combination of Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 105-111, January.
    13. Hendry, David F & Doornik, Jurgen A, 1997. "The Implications for Econometric Modelling of Forecast Failure," Scottish Journal of Political Economy, Scottish Economic Society, vol. 44(4), pages 437-461, September.
    14. Ericsson, Neil R., 1992. "Parameter constancy, mean square forecast errors, and measuring forecast performance: An exposition, extensions, and illustration," Journal of Policy Modeling, Elsevier, vol. 14(4), pages 465-495, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    2. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    3. Huiyu Huang & Tae-Hwy Lee, 2010. "To Combine Forecasts or to Combine Information?," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
    4. Elkin Castaño & Luis Fernando Melo, 1998. "Métodos de Combinación de Pronósticos: Una Aplicación a la Inflación Colombiana," Borradores de Economia 109, Banco de la Republica de Colombia.
    5. West, Kenneth D., 2001. "Encompassing tests when no model is encompassing," Journal of Econometrics, Elsevier, vol. 105(1), pages 287-308, November.
    6. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    7. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    8. Michael P. Clements & David I. Harvey, 2010. "Forecast encompassing tests and probability forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(6), pages 1028-1062.
    9. Antonis Michis, 2012. "Monitoring Forecasting Combinations with Semiparametric Regression Models," Working Papers 2012-2, Central Bank of Cyprus.
    10. Antonis Michis, 2012. "Monitoring Forecasting Combinations with Semiparametric Regression Models," Working Papers 2012-02, Central Bank of Cyprus.
    11. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    12. repec:lan:wpaper:470 is not listed on IDEAS
    13. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223.
    14. David G. McMillan & Mark E. Wohar, 2010. "Stock return predictability and dividend-price ratio: a nonlinear approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 351-365.
    15. Massimiliano Marcellino, "undated". "Further Results on MSFE Encompassing," Working Papers 143, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    16. Michael P. Clements & David F. Hendry, 2005. "Guest Editors’ Introduction: Information in Economic Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 713-753, December.
    17. Cook, S., 1996. "Econometric methodology I," Discussion Paper Series In Economics And Econometrics 9618, Economics Division, School of Social Sciences, University of Southampton.
    18. Qizilbash, M., 1994. "Bribery, efficiency wages and political protection," Discussion Paper Series In Economics And Econometrics 9418, Economics Division, School of Social Sciences, University of Southampton.
    19. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
    20. Neil R. Ericsson, 2000. "Predictable uncertainty in economic forecasting," International Finance Discussion Papers 695, Board of Governors of the Federal Reserve System (U.S.).
    21. Luis Fernando Melo Velandia & Héctor M. Núñez Amortegui, 2004. "Combinación de pronósticos de la inflación en presencia de cambios estructurales," BORRADORES DE ECONOMIA 002153, BANCO DE LA REPÚBLICA.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:7:y:2004:i:1:p:1-31. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.