IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling

Listed author(s):
  • Janczura, Joanna
  • Trück, Stefan
  • Weron, Rafał
  • Wolff, Rodney C.

An important issue in fitting stochastic models to electricity spot prices is the estimation of a component to deal with trends and seasonality in the data. Unfortunately, estimation routines for the long-term and short-term seasonal pattern are usually quite sensitive to extreme observations, known as electricity price spikes. Improved robustness of the model can be achieved by (a) filtering the data with some reasonable procedure for outlier detection, and then (b) using estimation and testing procedures on the filtered data. In this paper we examine the effects of different treatments of extreme observations on model estimation and on determining the number of spikes (outliers). In particular we compare results for the estimation of the seasonal and stochastic components of electricity spot prices using either the original or filtered data. We find significant evidence for a superior estimation of both the seasonal short-term and long-term components when the data have been treated carefully for outliers. Overall, our findings point out the substantial impact the treatment of extreme observations may have on these issues and, therefore, also on the pricing of electricity derivatives like futures and option contracts. An added value of our study is the ranking of different filtering techniques used in the energy economics literature, suggesting which methods could be and which should not be used for spike identification.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0140988313000625
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Energy Economics.

Volume (Year): 38 (2013)
Issue (Month): C ()
Pages: 96-110

as
in new window

Handle: RePEc:eee:eneeco:v:38:y:2013:i:c:p:96-110
DOI: 10.1016/j.eneco.2013.03.013
Contact details of provider: Web page: http://www.elsevier.com/locate/eneco

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Haldrup, Niels & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2010. "A vector autoregressive model for electricity prices subject to long memory and regime switching," Energy Economics, Elsevier, vol. 32(5), pages 1044-1058, September.
  2. repec:spr:compst:v:69:y:2009:i:3:p:457-473 is not listed on IDEAS
  3. Mount, Timothy D. & Ning, Yumei & Cai, Xiaobin, 2006. "Predicting price spikes in electricity markets using a regime-switching model with time-varying parameters," Energy Economics, Elsevier, vol. 28(1), pages 62-80, January.
  4. repec:dau:papers:123456789/1433 is not listed on IDEAS
  5. Higgs, Helen & Worthington, Andrew, 2008. "Stochastic price modeling of high volatility, mean-reverting, spike-prone commodities: The Australian wholesale spot electricity market," Energy Economics, Elsevier, vol. 30(6), pages 3172-3185, November.
  6. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
  7. Trueck, Stefan & Weron, Rafal & Wolff, Rodney, 2007. "Outlier Treatment and Robust Approaches for Modeling Electricity Spot Prices," MPRA Paper 4711, University Library of Munich, Germany.
  8. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298.
  9. Huisman, Ronald & Mahieu, Ronald, 2003. "Regime jumps in electricity prices," Energy Economics, Elsevier, vol. 25(5), pages 425-434, September.
  10. De Jong Cyriel, 2006. "The Nature of Power Spikes: A Regime-Switch Approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-28, September.
  11. Weron, Rafal, 2008. "Heavy-tails and regime-switching in electricity prices," MPRA Paper 10424, University Library of Munich, Germany.
  12. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
  13. Nomikos, Nikos K. & Soldatos, Orestes A., 2010. "Analysis of model implied volatility for jump diffusion models: Empirical evidence from the Nordpool market," Energy Economics, Elsevier, vol. 32(2), pages 302-312, March.
  14. Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  15. Max Stevenson, 2001. "Filtering and Forecasting Spot Electricity Prices in the Increasingly Deregulated Australian Electricity Market," Research Paper Series 63, Quantitative Finance Research Centre, University of Technology, Sydney.
  16. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
  17. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.
  18. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Intra-day and regime-switching dynamics in electricity price formation," Energy Economics, Elsevier, vol. 30(4), pages 1776-1797, July.
  19. Rafal Weron & Ingve Simonsen & Piotr Wilman, 2003. "Modeling highly volatile and seasonal markets: evidence from the Nord Pool electricity market," Econometrics 0303007, EconWPA.
  20. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
  21. Simonsen, Ingve, 2005. "Volatility of power markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 10-20.
  22. Ralf Becker & Stan Hurn & Vlad Pavlov, 2007. "Modelling Spikes in Electricity Prices," The Economic Record, The Economic Society of Australia, vol. 83(263), pages 371-382, December.
  23. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
  24. Alvaro Cartea & Marcelo Gustavo Figueroa, 2005. "Pricing in Electricity Markets: a Mean Reverting Jump Diffusion Model with Seasonality," Birkbeck Working Papers in Economics and Finance 0507, Birkbeck, Department of Economics, Mathematics & Statistics.
  25. Redl, Christian & Haas, Reinhard & Huber, Claus & Böhm, Bernhard, 2009. "Price formation in electricity forward markets and the relevance of systematic forecast errors," Energy Economics, Elsevier, vol. 31(3), pages 356-364, May.
  26. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
  27. Michael Bierbrauer & Stefan Trueck & Rafal Weron, 2005. "Modeling electricity prices with regime switching models," Econometrics 0502005, EconWPA.
  28. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
  29. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
  30. Rafal Weron & Michael Bierbrauer & Stefan Trück, 2003. "Modeling electricity prices: jump diffusion and regime switching," HSC Research Reports HSC/03/01, Hugo Steinhaus Center, Wroclaw University of Technology.
  31. Stevenson Maxwell J & Moreira do Amaral Luiz Felipe & Peat Maurice, 2006. "Risk Management and the Role of Spot Price Predictions in the Australian Retail Electricity Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-25, September.
  32. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.
  33. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "Modeling and forecasting of the long-term seasonal component of the EEX and Nord Pool spot prices," HSC Research Reports HSC/13/02, Hugo Steinhaus Center, Wroclaw University of Technology.
  34. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
  35. Erlwein, Christina & Benth, Fred Espen & Mamon, Rogemar, 2010. "HMM filtering and parameter estimation of an electricity spot price model," Energy Economics, Elsevier, vol. 32(5), pages 1034-1043, September.
  36. Ben Hambly & Sam Howison & Tino Kluge, 2009. "Modelling spikes and pricing swing options in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 937-949.
  37. Weron, Rafal & Janczura, Joanna, 2010. "Efficient estimation of Markov regime-switching models: An application to electricity wholesale market prices," MPRA Paper 26628, University Library of Munich, Germany.
  38. : Enzo Fanone & Andrea Gamba & Marcel Prokopczuk, 2011. "The Case of Negative Day-Ahead Electricity Prices," Working Papers wpn11-01, Warwick Business School, Finance Group.
  39. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
  40. Kanamura, Takashi & O[combining macron]hashi, Kazuhiko, 2008. "On transition probabilities of regime switching in electricity prices," Energy Economics, Elsevier, vol. 30(3), pages 1158-1172, May.
  41. Bierbrauer, Michael & Menn, Christian & Rachev, Svetlozar T. & Truck, Stefan, 2007. "Spot and derivative pricing in the EEX power market," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3462-3485, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:38:y:2013:i:c:p:96-110. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.