IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Periodic Seasonal Reg-ARFIMA-GARCH Models for Daily Electricity Spot Prices

Listed author(s):
  • Siem Jan Koopman

    ()

    (Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam)

  • Marius Ooms

    ()

    (Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam)

  • M. Angeles Carnero

    ()

    (Dpt. Fundamentos del Analisis Economico, University of Alicante)

This discussion paper resulted in an article in the Journal of the American Statistical Association (2007). Vol. 102, issue 477, pages 16-27. Novel periodic extensions of dynamic long memory regression models with autoregressive conditional heteroskedastic errors are considered for the analysis of daily electricity spot prices. The parameters of the model with mean and variance specifications are estimated simultaneously by the method of approximate maximum likelihood. The methods are implemented for time series of 1, 200 to 4, 400 daily price observations. Apart from persistence, heteroskedasticity and extreme observations in prices, a novel empirical finding is the importance of day-of-the-week periodicity in the autocovariance function of electricity spot prices. In particular, daily log prices from the Nord Pool power exchange of Norway are modeled effectively by our framework, which is also extended with explanatory variables. For the daily log prices of three European emerging electricity markets (EEX in Germany, Powernext in France, APX in The Netherlands), which are less persistent, periodicity is also highly significant.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://papers.tinbergen.nl/05091.pdf
Download Restriction: no

Paper provided by Tinbergen Institute in its series Tinbergen Institute Discussion Papers with number 05-091/4.

as
in new window

Length:
Date of creation: 12 Oct 2005
Handle: RePEc:tin:wpaper:20050091
Contact details of provider: Postal:
Gustav Mahlerplein 117, 1082 MS Amsterdam

Phone: +31 (0)20 598 4580
Web page: http://www.tinbergen.nl/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  2. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
  3. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
  4. Jensen, S ren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1203-1226, December.
  5. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
  6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  7. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  8. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
  9. Wilkinson, Louise & Winsen, Joseph, 2002. "What We Can Learn from a Statistical Analysis of Electricity Prices in New South Wales," The Electricity Journal, Elsevier, vol. 15(3), pages 60-69, April.
  10. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
  11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20050091. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tinbergen Office +31 (0)10-4088900)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.