IDEAS home Printed from https://ideas.repec.org/p/ecm/ausm04/158.html
   My bibliography  Save this paper

Periodic Heteroskedastic RegARFIMA models for daily electricity spot prices

Author

Listed:
  • Marius Ooms
  • M. Angeles Carnero
  • Siem Jan Koopman

Abstract

In this paper we consider different periodic extensions of regression models with autoregressive fractionally integrated moving average disturbances for the analysis of daily spot prices of electricity. We show that day-of-the-week periodicity and long memory are important determinants for the dynamic modelling of the conditional mean of electricity spot prices. Once an effective description of the conditional mean of spot prices is empirically identified, focus can be directed towards volatility features of the time series. For the older electricity market of Nord Pool in Norway, it is found that a long memory model with periodic coefficients is required to model daily spot prices effectively. Further, strong evidence of conditional heteroskedasticity is found in the mean corrected Nord Pool series. For daily prices at three emerging electricity markets that we consider (APX in The Netherlands, EEX in Germany and Powernext in France) periodicity in the autoregressive coefficients is also stablished, but evidence of long memory is not found and existence of dynamic behaviour in the variance of the spot prices is less pronounced. The novel findings in this paper can have important consequences for the modelling and forecasting of mean and variance functions of spot prices for electricity and associated contingent assets

Suggested Citation

  • Marius Ooms & M. Angeles Carnero & Siem Jan Koopman, 2004. "Periodic Heteroskedastic RegARFIMA models for daily electricity spot prices," Econometric Society 2004 Australasian Meetings 158, Econometric Society.
  • Handle: RePEc:ecm:ausm04:158
    as

    Download full text from publisher

    File URL: http://www.tinbergen.nl/discussionpapers/03071.pdf
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Bystrom, Hans N. E., 2005. "Extreme value theory and extremely large electricity price changes," International Review of Economics & Finance, Elsevier, vol. 14(1), pages 41-55.
    3. Ooms, Marius & Franses, Philip Hans, 1997. "On Periodic Correlations between Estimated Seasonal and Nonseasonal Components in German and U.S. Unemployment," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 470-481, October.
    4. Franses, Philip Hans, 1996. "Periodicity and Stochastic Trends in Economic Time Series," OUP Catalogue, Oxford University Press, number 9780198774549.
    5. Oberhofer, W & Kmenta, J, 1974. "A General Procedure for Obtaining Maximum Likelihood Estimates in Generalized Regression Models," Econometrica, Econometric Society, vol. 42(3), pages 579-590, May.
    6. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    7. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    8. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 291-320, October.
    9. Carlin, J. B. & Dempster, A. P. & Jonas, A. B., 1985. "On models and methods for Bayesian time series analysis," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 67-90.
    10. Michael Dueker & Richard Startz, 1998. "Maximum-Likelihood Estimation Of Fractional Cointegration With An Application To U.S. And Canadian Bond Rates," The Review of Economics and Statistics, MIT Press, vol. 80(3), pages 420-426, August.
    11. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Wilkinson, Louise & Winsen, Joseph, 2002. "What We Can Learn from a Statistical Analysis of Electricity Prices in New South Wales," The Electricity Journal, Elsevier, vol. 15(3), pages 60-69, April.
    14. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038 Elsevier.
    15. de Jong, C.M. & Huisman, R., 2002. "Option Formulas for Mean-Reverting Power Prices with Spikes," ERIM Report Series Research in Management ERS-2002-96-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    17. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
    18. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, March.
    19. Franses, Philip Hans & Ooms, Marius, 1997. "A periodic long-memory model for quarterly UK inflation," International Journal of Forecasting, Elsevier, vol. 13(1), pages 117-126, March.
    20. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    21. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Time Series: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 343-349, October.
    22. Daniel B. Nelson, 1994. "Asymptotically Optimal Smoothing with ARCH Models," NBER Technical Working Papers 0161, National Bureau of Economic Research, Inc.
    23. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandro Sapio, 2004. "Markets Design, Bidding Rules, and Long Memory in Electricity Prices," Revue d'Économie Industrielle, Programme National Persée, vol. 107(1), pages 151-170.
    2. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    3. Caporin, Massimiliano & Preś, Juliusz & Torro, Hipolit, 2012. "Model based Monte Carlo pricing of energy and temperature Quanto options," Energy Economics, Elsevier, vol. 34(5), pages 1700-1712.
    4. repec:dau:papers:123456789/2285 is not listed on IDEAS
    5. Koopman, Siem Jan & Ooms, Marius, 2006. "Forecasting daily time series using periodic unobserved components time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
    6. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    7. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    8. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
    9. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    10. Bruno Bosco & Lucia Parisio & Matteo Pelagatti, 2006. "Deregulated Wholesale Electricity Prices in Italy," Working Papers 20060301, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica, revised Apr 2006.
    11. Kosater, Peter, 2006. "On the impact of weather on German hourly power prices," Discussion Papers in Econometrics and Statistics 1/06, University of Cologne, Institute of Econometrics and Statistics.
    12. Malo, Pekka, 2009. "Modeling electricity spot and futures price dependence: A multifrequency approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4763-4779.
    13. Karakatsani Nektaria V & Bunn Derek W., 2010. "Fundamental and Behavioural Drivers of Electricity Price Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-42, September.
    14. Haldrup Niels & Nielsen Morten Ø., 2006. "Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-24, September.
    15. Hipòlit Torró, 2007. "Forecasting Weekly Electricity Prices at Nord Pool," Working Papers 2007.88, Fondazione Eni Enrico Mattei.
    16. Kosater, Peter & Mosler, Karl, 2006. "Can Markov regime-switching models improve power-price forecasts? Evidence from German daily power prices," Applied Energy, Elsevier, vol. 83(9), pages 943-958, September.
    17. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Intra-day and regime-switching dynamics in electricity price formation," Energy Economics, Elsevier, vol. 30(4), pages 1776-1797, July.

    More about this item

    Keywords

    GARCH; Long Memory;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:158. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.