IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v13y1997i1p117-126.html
   My bibliography  Save this article

A periodic long-memory model for quarterly UK inflation

Author

Listed:
  • Franses, Philip Hans
  • Ooms, Marius

Abstract

No abstract is available for this item.

Suggested Citation

  • Franses, Philip Hans & Ooms, Marius, 1997. "A periodic long-memory model for quarterly UK inflation," International Journal of Forecasting, Elsevier, vol. 13(1), pages 117-126, March.
  • Handle: RePEc:eee:intfor:v:13:y:1997:i:1:p:117-126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(96)00715-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    3. Ray, Bonnie K., 1993. "Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model," International Journal of Forecasting, Elsevier, vol. 9(2), pages 255-269, August.
    4. Cheung, Yin-Wong, 1993. "Long Memory in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 93-101, January.
    5. Franses, Philip Hans & Paap, Richard, 1994. "Model Selection in Periodic Autoregressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(4), pages 421-439, November.
    6. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
    2. Carlos P. Barros & Luis A. Gil-Alana, 2013. "Inflation Forecasting in Angola: A Fractional Approach," African Development Review, African Development Bank, vol. 25(1), pages 91-104, March.
    3. Maria Caporale, Guglielmo & A. Gil-Alana, Luis, 2011. "Multi-Factor Gegenbauer Processes and European Inflation Rates," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 26, pages 386-409.
    4. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    5. Laurent Ferrara & Dominique Guégan, 2008. "Business surveys modelling with Seasonal-Cyclical Long Memory models," Economics Bulletin, AccessEcon, vol. 3(29), pages 1-10.
    6. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    7. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 9(1), pages 29-67, March.
    8. Guglielmo Maria Caporale & Marinko Skare, 2014. "Long Memory in UK Real GDP, 1851-2013: An ARFIMA-FIGARCH Analysis," Discussion Papers of DIW Berlin 1395, DIW Berlin, German Institute for Economic Research.
    9. repec:bla:jorssa:v:180:y:2017:i:2:p:353-407 is not listed on IDEAS
    10. Ahdi Ajmi & Adnen Ben Nasr & Mohamed Boutahar, 2008. "Seasonal Nonlinear Long Memory Model for the US Inflation Rates," Computational Economics, Springer;Society for Computational Economics, vol. 31(3), pages 243-254, April.
    11. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    12. Christopher F. Baum & John Barkoulas, 2006. "Long-memory forecasting of US monetary indices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 291-302.
    13. repec:ebl:ecbull:v:3:y:2008:i:29:p:1-10 is not listed on IDEAS
    14. Ben Nasr, Adnen & Trabelsi, Abdelwahed, 2005. "Seasonal and Periodic Long Memory Models in the In�ation Rates," MPRA Paper 22690, University Library of Munich, Germany, revised 03 Feb 2006.
    15. John W. Galbraith & Greg Tkacz, 2007. "How Far Can Forecasting Models Forecast? Forecast Content Horizons for Some Important Macroeconomic Variables," Staff Working Papers 07-1, Bank of Canada.
    16. Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
    17. Ooms, M. & Franses, Ph.H.B.F., 1998. "A seasonal periodic long memory model for monthly river flows," Econometric Institute Research Papers EI 9842, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Ye, Xunyu & Gao, Ping & Li, Handong, 2015. "Improving estimation of the fractionally differencing parameter in the SARFIMA model using tapered periodogram," Economic Modelling, Elsevier, vol. 46(C), pages 167-179.
    19. Yin-Wong Cheung & Sang-Kuck Chung, 2011. "A Long Memory Model with Normal Mixture GARCH," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 517-539, November.
    20. Bensalma, Ahmed, 2018. "Two Distinct Seasonally Fractionally Differenced Periodic Processes," MPRA Paper 84969, University Library of Munich, Germany.
    21. G. K. Randolph TAN, 2004. "Long Memory in Import and Export Price Inflation and Persistence of Shocks to the Terms of Trade," Econometric Society 2004 Far Eastern Meetings 732, Econometric Society.
    22. Dominique Guegan, 2003. "A prospective study of the k-factor Gegenbauer processes with heteroscedastic errors and an application to inflation rates," Post-Print halshs-00201314, HAL.
    23. repec:eee:jebusi:v:92:y:2017:i:c:p:45-62 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:13:y:1997:i:1:p:117-126. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.