IDEAS home Printed from https://ideas.repec.org/p/boc/bocoec/558.html
   My bibliography  Save this paper

Long-Memory Forecasting of U.S. Monetary Indices

Author

Listed:
  • John Barkoulas

    (University of Tennessee)

  • Christopher F. Baum

    (Boston College
    DIW Berlin)

Abstract

Several studies have tested for long-range dependence in macroeconomic and financial time series but very few have assessed the usefulness of long-memory models as forecast generating mechanisms. This study tests for fractional differencing in the U.S. monetary indices (simple sum and divisia) and compares the out-of-sample fractional forecasts to benchmark forecasts. The long-memory parameter is estimated using RobinsonÕs Gaussian semiparametric and multivariate log-periodogram methods. The evidence amply suggests that the monetary series possess a fractional order between one and two. Fractional out-of-sample forecasts are consistently more accurate (with the exception of the M3 series) than benchmark autoregressive forecasts but the forecasting gains are not generally statistically significant. In terms of forecast encompassing, the fractional model encompasses the autoregressive model for the divisia series but neither model encompasses the other for the simple sum series.

Suggested Citation

  • John Barkoulas & Christopher F. Baum, 2003. "Long-Memory Forecasting of U.S. Monetary Indices," Boston College Working Papers in Economics 558, Boston College Department of Economics.
  • Handle: RePEc:boc:bocoec:558
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/EC-P/wp558.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    2. John T. Barkoulas & Christopher F. Baum, 1997. "Fractional Differencing Modeling And Forecasting Of Eurocurrency Deposit Rates," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 20(3), pages 355-372, September.
    3. Diebold, Francis X & Rudebusch, Glenn D, 1991. "Is Consumption Too Smooth? Long Memory and the Deaton Paradox," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 1-9, February.
    4. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    5. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    6. Cheung, Yin-Wong, 1993. "Long Memory in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 93-101, January.
    7. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
    8. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
    9. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Fildes, Robert & Stekler, Herman, 2002. "Reply to the comments on 'The state of macroeconomic forecasting'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 503-505, December.
    12. Christopher F. Baum & John T. Barkoulas & Mustafa Caglayan, 1999. "Persistence in International Inflation Rates," Southern Economic Journal, John Wiley & Sons, vol. 65(4), pages 900-913, April.
    13. Christopher F. Baum & John T. Barkoulas & Mustafa Caglayan, 1999. "Persistence in International Inflation Rates," Southern Economic Journal, John Wiley & Sons, vol. 65(4), pages 900-913, April.
    14. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809.
    15. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    16. Franses, Philip Hans & Ooms, Marius, 1997. "A periodic long-memory model for quarterly UK inflation," International Journal of Forecasting, Elsevier, vol. 13(1), pages 117-126, March.
    17. Diebold, Francis X. & Lindner, Peter, 1996. "Fractional integration and interval prediction," Economics Letters, Elsevier, vol. 50(3), pages 305-313, March.
    18. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    19. Ray, Bonnie K., 1993. "Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model," International Journal of Forecasting, Elsevier, vol. 9(2), pages 255-269, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Chikhi & Anne Péguin-Feissolle & Michel Terraza, 2013. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 249-265, February.
    2. Carlos Barros & Luis Gil-Alana, 2013. "Inflation Forecasting in Angola: A Fractional Approach," African Development Review, African Development Bank, vol. 25(1), pages 91-104.
    3. Maria Caporale, Guglielmo & A. Gil-Alana, Luis, 2011. "Multi-Factor Gegenbauer Processes and European Inflation Rates," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 26, pages 386-409.
    4. Baillie, Richard T. & Kongcharoen, Chaleampong & Kapetanios, George, 2012. "Prediction from ARFIMA models: Comparisons between MLE and semiparametric estimation procedures," International Journal of Forecasting, Elsevier, vol. 28(1), pages 46-53.
    5. S. D. Grose & D. S. Poskitt, 2006. "The Finite-Sample Properties of Autoregressive Approximations of Fractionally-Integrated and Non-Invertible Processes," Monash Econometrics and Business Statistics Working Papers 15/06, Monash University, Department of Econometrics and Business Statistics.
    6. Fernandez, Viviana, 2010. "Commodity futures and market efficiency: A fractional integrated approach," Resources Policy, Elsevier, vol. 35(4), pages 276-282, December.
    7. Carlos P. Barros & Guglielmo Maria Caporale & Luis A. Gil-Alana, 2014. "Long Memory in Angolan Macroeconomic Series: Mean Reversion versus Explosive Behaviour," African Development Review, African Development Bank, vol. 26(1), pages 59-73, March.
    8. Gil-Alana, Luis A. & Huijbens, Edward H., 2018. "Tourism in Iceland: Persistence and seasonality," Annals of Tourism Research, Elsevier, vol. 68(C), pages 20-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    2. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    3. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    4. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    5. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    6. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Persistence and Structural Breaks: The Experience of Inflation Targeting Countries and the US," Working papers 2016-11, University of Connecticut, Department of Economics.
    7. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    8. Ben Nasr, Adnen & Trabelsi, Abdelwahed, 2005. "Seasonal and Periodic Long Memory Models in the In�ation Rates," MPRA Paper 22690, University Library of Munich, Germany, revised 03 Feb 2006.
    9. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    10. Jinquan Liu & Tingguo Zheng & Jianli Sui, 2008. "Dual long memory of inflation and test of the relationship between inflation and inflation uncertainty," Psychometrika, Springer;The Psychometric Society, vol. 3(2), pages 240-254, June.
    11. Jesus Gonzalo & Tae-Hwy Lee, 2000. "On the robustness of cointegration tests when series are fractionally intergrated," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(7), pages 821-827.
    12. Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.
    13. Robert A. Connolly & Z. Nuray G‹Ner & Kenneth N. Hightower, 2007. "Evidence on the Extent and Potential Sources of Long Memory in U.S. Treasury Security Returns and Yields," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(2-3), pages 689-702, March.
    14. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    15. Christopher F. Baum & John T. Barkoulas & Mustafa Caglayan, 1999. "Persistence in International Inflation Rates," Southern Economic Journal, John Wiley & Sons, vol. 65(4), pages 900-913, April.
    16. Gonzalo, Jesus & Lee, Tae-Hwy, 1998. "Pitfalls in testing for long run relationships," Journal of Econometrics, Elsevier, vol. 86(1), pages 129-154, June.
    17. Mark J. Jensen, 2009. "The Long‐Run Fisher Effect: Can It Be Tested?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(1), pages 221-231, February.
    18. Carlos Barros & Luis Gil-Alana, 2013. "Inflation Forecasting in Angola: A Fractional Approach," African Development Review, African Development Bank, vol. 25(1), pages 91-104.
    19. Boutahar, Mohamed & Mootamri, Imène & Péguin-Feissolle, Anne, 2009. "A fractionally integrated exponential STAR model applied to the US real effective exchange rate," Economic Modelling, Elsevier, vol. 26(2), pages 335-341, March.
    20. Benjamin J. C. Kim & David Karemera, 2006. "Assessing the forecasting accuracy of alternative nominal exchange rate models: the case of long memory," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 369-380.

    More about this item

    Keywords

    long memory; ARFIMA model; macroeconomic forecasting.;
    All these keywords.

    JEL classification:

    • E51 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Money Supply; Credit; Money Multipliers
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/debocus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.