IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v16y1995i1p119-125.html
   My bibliography  Save this article

Stochastic Orders Of Magnitude Associated With Two‐Stage Estimators Of Fractional Arima Systems

Author

Listed:
  • J. H. Wright

Abstract

. Two‐stage estimators have been proposed in fractional autoregressive integrated moving‐average (ARIMA) systems which first estimate the long‐run features of the system semi‐parametrically and then estimate the short‐run features by usual methods in a second stage. Although asymptotic theory is available for the estimates in the first stage of such a procedure, we are aware of no results concerning the estimates in the second stage. In this paper we provide a stochastic order of magnitude associated with an estimator in this class and discuss this result.

Suggested Citation

  • J. H. Wright, 1995. "Stochastic Orders Of Magnitude Associated With Two‐Stage Estimators Of Fractional Arima Systems," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(1), pages 119-125, January.
  • Handle: RePEc:bla:jtsera:v:16:y:1995:i:1:p:119-125
    DOI: 10.1111/j.1467-9892.1995.tb00225.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.1995.tb00225.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.1995.tb00225.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robinson, Peter M, 1988. "The Stochastic Difference between Econometric Statistics," Econometrica, Econometric Society, vol. 56(3), pages 531-548, May.
    2. G. J. Janacek, 1982. "Determining The Degree Of Differencing For Time Series Via The Log Spectrum," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(3), pages 177-183, May.
    3. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    4. P. M. Robinson, 1987. "Time Series Residuals With Application To Probability Density Estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 329-344, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    2. Robinson, P.M. & Vidal Sanz, J., 2006. "Modified Whittle estimation of multilateral models on a lattice," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1090-1120, May.
    3. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    4. O. Mikhail & C. J. Eberwein & J. Handa, 2006. "Estimating persistence in Canadian unemployment: evidence from a Bayesian ARFIMA," Applied Economics, Taylor & Francis Journals, vol. 38(15), pages 1809-1819.
    5. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    6. Ossama Mikhail & Curtis J. Eberwein & Jagdish Handa, 2003. "Testing and Estimating Persistence in Canadian Unemployment," Econometrics 0311004, University Library of Munich, Germany.
    7. B. Verspagen & G. Silverberg, 2000. "A note on Michelacci and Zaffaroni, long memory, and time series of economic growth," Working Papers 00.17, Eindhoven Center for Innovation Studies.
    8. Claudio Morana, 2010. "Heteroskedastic Factor Vector Autoregressive Estimation of Persistent and Non Persistent Processes Subject to Structural Breaks," ICER Working Papers - Applied Mathematics Series 36-2010, ICER - International Centre for Economic Research.
    9. Baillie, Richard T & Bollerslev, Tim, 1994. "Cointegration, Fractional Cointegration, and Exchange Rate Dynamics," Journal of Finance, American Finance Association, vol. 49(2), pages 737-745, June.
    10. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    11. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    12. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    13. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    14. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2022. "Globalization, long memory, and real interest rate convergence: a historical perspective," Empirical Economics, Springer, vol. 63(5), pages 2331-2355, November.
    15. Caporale, Guglielmo Maria & Gil-Alana, Luis Alberiko & Poza, Carlos, 2022. "The COVID-19 pandemic and the degree of persistence of US stock prices and bond yields," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 118-123.
    16. SangKun Bae & Mark J. Jensen, 1998. "Long-Run Neutrality in a Long-Memory Model," Macroeconomics 9809006, University Library of Munich, Germany, revised 21 Apr 1999.
    17. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    18. Jesus Gonzalo & Tae-Hwy Lee, 2000. "On the robustness of cointegration tests when series are fractionally intergrated," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(7), pages 821-827.
    19. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CIRJE F-Series CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
    20. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:16:y:1995:i:1:p:119-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.