IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper

Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration

  • Morten Ørregaard Nielsen

    ()

    (Queen's University and CREATES)

  • Per Frederiksen

    ()

    (Nordea Markets)

In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches and we consider both parametric and semiparametric estimation methods. The estimators are briefly introduced and compared, and the criteria adopted for measuring finite sample performance are bias and root mean squared error. Most importantly, the simulations reveal that 1) the frequency domain maximum likelihood procedure is superior to the time domain parametric methods, 2) all the estimators are fairly robust to conditionally heteroscedastic errors, 3) the local polynomial Whittle and bias reduced log-periodogram regression estimators are shown to be more robust to short-run dynamics than other semiparametric (frequency domain and wavelet) estimators and in some cases even outperform the time domain parametric methods, and 4) without sufficient trimming of scales the wavelet based estimators are heavily biased.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://qed.econ.queensu.ca/working_papers/papers/qed_wp_1189.pdf
File Function: First version 2005
Download Restriction: no

Paper provided by Queen's University, Department of Economics in its series Working Papers with number 1189.

as
in new window

Length: 55 pages
Date of creation: Jul 2005
Date of revision:
Handle: RePEc:qed:wpaper:1189
Contact details of provider: Postal:
Kingston, Ontario, K7L 3N6

Phone: (613) 533-2250
Fax: (613) 533-6668
Web page: http://qed.econ.queensu.ca/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Cheung, Yin-Wong & Diebold, Francis X., 1994. "On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean," Journal of Econometrics, Elsevier, vol. 62(2), pages 301-316, June.
  2. Donald W.K. Andrews & Yixiao Sun, 2002. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Cowles Foundation Discussion Papers 1384, Cowles Foundation for Research in Economics, Yale University.
  3. Velasco, Carlos, 1998. "Non-Gaussian log-periodogram regression," DES - Working Papers. Statistics and Econometrics. WS 4553, Universidad Carlos III de Madrid. Departamento de Estadística.
  4. Mark J. Jensen, 1999. "An Approximate Wavelet MLE of Short- and Long-Memory Parameters," Computing in Economics and Finance 1999 1243, Society for Computational Economics.
  5. Diebold, Francis X & Rudebusch, Glenn D, 1991. "Is Consumption Too Smooth? Long Memory and the Deaton Paradox," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 1-9, February.
  6. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-313, September.
  7. Morten Oe. Nielsen, . "Efficient Likelihold Inference in Nonstationary Univariate Models," Economics Working Papers 2001-8, Department of Economics and Business Economics, Aarhus University.
  8. Shimotsu, Katsumi, 2002. "Exact Local Whittle Estimation of Fractional Integration with Unknown Mean and Time Trend," Economics Discussion Papers 8844, University of Essex, Department of Economics.
  9. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
  10. repec:esx:essedp:535 is not listed on IDEAS
  11. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
  12. Mark J. Jensen, 1997. "Using Wavelets to Obtain a Consistent Ordinary Least Squares Estimator of the Long Memory Parameter," Econometrics 9710002, EconWPA.
  13. Katsumi Shimotsu & Peter C.B. Phillips, 2002. "Exact Local Whittle Estimation of Fractional Integration," Cowles Foundation Discussion Papers 1367, Cowles Foundation for Research in Economics, Yale University, revised Jul 2004.
  14. Donald W.K. Andrews & Offer Lieberman, 2002. "Valid Edgeworth Expansions for the Whittle Maximum Likelihood Estimator for Stationary Long-memory Gaussian Time Series," Cowles Foundation Discussion Papers 1361, Cowles Foundation for Research in Economics, Yale University.
  15. repec:esx:essedp:543 is not listed on IDEAS
  16. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  17. Jensen, Mark J., 2000. "An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets," Journal of Economic Dynamics and Control, Elsevier, vol. 24(3), pages 361-387, March.
  18. Hauser, Michael A, 1997. "Semiparametric and Nonparametric Testing for Long Memory: A Monte Carlo Study," Empirical Economics, Springer, vol. 22(2), pages 247-71.
  19. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  20. Francis X. Diebold & Steven Husted & Mark Rush, 1990. "Real exchange rates under the gold standard," Discussion Paper / Institute for Empirical Macroeconomics 32, Federal Reserve Bank of Minneapolis.
  21. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  22. Carlos Velasco, 2003. "Gaussian Semi-parametric Estimation of Fractional Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 345-378, 05.
  23. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
  24. Velasco, Carlos, 1998. "Non-stationary log-periodogram regression," DES - Working Papers. Statistics and Econometrics. WS 4554, Universidad Carlos III de Madrid. Departamento de Estadística.
  25. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
  26. L. Giraitis & P.M. Robinson, 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
  27. Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Local Whittle Estimation in Nonstationary and Unit Root Cases," Cowles Foundation Discussion Papers 1266, Cowles Foundation for Research in Economics, Yale University, revised Sep 2003.
  28. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
  29. Lieberman, Offer & Phillips, Peter C.B., 2004. "Expansions For The Distribution Of The Maximum Likelihood Estimator Of The Fractional Difference Parameter," Econometric Theory, Cambridge University Press, vol. 20(03), pages 464-484, June.
  30. Tse, Y.K. & Anh, V.V. & Tieng, Q., 2002. "Maximum likelihood estimation of the fractional differencing parameter in an ARFIMA model using wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(1), pages 153-161.
  31. William R. Parke, 1999. "What Is Fractional Integration?," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 632-638, November.
  32. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
  33. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1189. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.