IDEAS home Printed from https://ideas.repec.org/p/fip/fedpwp/93-5.html

On maximum-likelihood estimation of the differencing parameter of fractionally integrated noise with unknown mean

Author

Listed:
  • Yin-Wong Cheung
  • Francis X. Diebold

Abstract

There are two approaches to maximum likelihood (ML) estimation of the parameter of fractionally-integrated noise: approximate frequency-domain ML (Fox and Taqqwu, 1986) and exact time-domain ML (Solwell, 1990a). If the mean of the process is known, then a clear finite-sample mean-squared error (MSE) ranking of the estimators emerges: the exact time-domain estimator has smaller MSE. We show in this paper, however, that the finite-sample efficiency of approximate frequency-domain ML relative to exact time-domain ML rises dramatically when the mean result is unknown and instead must be estimated. The intuition for our result is straightforward: The frequency-domain ML estimator is invariant to the true but unknown mean of the process, while the time-domain ML estimator is not. Feasible time-domain estimation must therefore be based upon de-meaned data, but the long memory associated with fractional integration makes precise estimation of the mean difficult. We conclude that the frequency-domain estimator is an attractive and efficient alternative for situations in which large sample sizes render time-domain estimation impractical.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Yin-Wong Cheung & Francis X. Diebold, 1993. "On maximum-likelihood estimation of the differencing parameter of fractionally integrated noise with unknown mean," Working Papers 93-5, Federal Reserve Bank of Philadelphia.
  • Handle: RePEc:fip:fedpwp:93-5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedpwp:93-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beth Paul (email available below). General contact details of provider: https://edirc.repec.org/data/frbphus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.