IDEAS home Printed from https://ideas.repec.org/p/aah/aarhec/2003-10.html
   My bibliography  Save this paper

Estimation of Fractional Integration in the Presence of Data Noise

Author

Listed:
  • Haldrup, Niels
  • Nielsen, Morten Oe.

    () (Department of Economics Aarhus, Denmark)

Abstract

The paper presents a comparative study on the performance of commonly used estimators of the fractional order of integration when data is contaminated by noise. In particular, measurement errors, additive outliers, temporary change outliers, and structural change outliers are addressed. It occurs that when the sample size is not too large, as is frequently the case for macroeconomic data, then non-persistent noise will generally bias the estimators of the memory parameter downwards. On the other hand, relatively more persistent noise like temporary change outliers and structural changes can have the opposite effect and thus bias the fractional parameter upwards. Surprisingly, with respect to the relative performance of the various estimators, the parametric conditional maximum likelihood estimator with modelling of the short run dynamics clearly outperforms the semiparametric estimators in the presence of noise that is not too persistent.

Suggested Citation

  • Haldrup, Niels & Nielsen, Morten Oe., "undated". "Estimation of Fractional Integration in the Presence of Data Noise," Economics Working Papers 2003-10, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:aarhec:2003-10
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/afn/wp/03/wp03_10.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, pages 355-389.
    3. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    4. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, pages 131-159.
    5. Franses, Philip Hans & Haldrup, Niels, 1994. "The Effects of Additive Outliers on Tests for Unit Roots and Cointegration," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 471-478, October.
    6. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    7. Chung, Ching-Fan & Baillie, Richard T, 1993. "Small Sample Bias in Conditional Sum-of-Squares Estimators of Fractionally Integrated ARMA Models," Empirical Economics, Springer, vol. 18(4), pages 791-806.
    8. Philip Hans Franses & Marius Ooms & Charles S. Bos, 1999. "Long memory and level shifts: Re-analyzing inflation rates," Empirical Economics, Springer, vol. 24(3), pages 427-449.
    9. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
    10. Haldrup, Niels & Montanes, Antonio & Sanso, Andreu, 2005. "Measurement errors and outliers in seasonal unit root testing," Journal of Econometrics, Elsevier, pages 103-128.
    11. Yoon, Gawon, 2005. "Long-memory property of nonlinear transformations of break processes," Economics Letters, Elsevier, vol. 87(3), pages 373-377, June.
    12. Crato, Nuno & Rothman, Philip, 1994. "Fractional integration analysis of long-run behavior for US macroeconomic time series," Economics Letters, Elsevier, vol. 45(3), pages 287-291.
    13. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    14. Laura Mayoral & Juan J. Dolado & Jesús Gonzalo, 2003. "Long-range dependence in Spanish political opinion poll series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(2), pages 137-155.
    15. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
    16. Dittmann, Ingolf & Granger, Clive W. J., 2002. "Properties of nonlinear transformations of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 110(2), pages 113-133, October.
    17. Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Local Whittle Estimation in Nonstationary and Unit Root Cases," Cowles Foundation Discussion Papers 1266, Cowles Foundation for Research in Economics, Yale University, revised Sep 2003.
    18. repec:cup:apsrev:v:90:y:1996:i:03:p:567-580_20 is not listed on IDEAS
    19. David Byers & James Davidson & David Peel, 1997. "Modelling Political Popularity: an Analysis of Long-range Dependence in Opinion Poll Series," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 471-490.
    20. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
    21. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    22. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    23. Chong, Terence Tai-leung & Lui, Gilbert Chiu-sing, 1999. "Estimating the fractionally integrated process in the presence of measurement errors," Economics Letters, Elsevier, vol. 63(3), pages 285-294, June.
    24. William R. Parke, 1999. "What Is Fractional Integration?," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 632-638, November.
    25. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    26. Alex Maynard & Peter C. B. Phillips, 2001. "Rethinking an old empirical puzzle: econometric evidence on the forward discount anomaly," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 671-708.
    27. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassler, Uwe & Nautz, Dieter, 2008. "On the persistence of the Eonia spread," Economics Letters, Elsevier, vol. 101(3), pages 184-187, December.
    2. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.
    3. Nautz, Dieter & Scheithauer, Jan, 2011. "Monetary policy implementation and overnight rate persistence," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1375-1386.
    4. Uwe Hassler & Paulo M.M. Rodrigues & Antonio Rubia, 2016. "Quantile Regression for Long Memory Testing: A Case of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(4), pages 693-724.
    5. Ho, Hwai-Chung, 2015. "Sample quantile analysis for long-memory stochastic volatility models," Journal of Econometrics, Elsevier, vol. 189(2), pages 360-370.
    6. Per Frederiksen & Morten Orregaard Nielsen, 2008. "Bias-Reduced Estimation of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(4), pages 496-512, Fall.
    7. Hansen, Peter R. & Lunde, Asger, 2014. "Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error," Econometric Theory, Cambridge University Press, vol. 30(01), pages 60-93, February.
    8. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(06), pages 1196-1237, December.
    9. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    10. Davidson, James & Hashimzade, Nigar, 2009. "Type I and type II fractional Brownian motions: A reconsideration," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2089-2106, April.
    11. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, pages 785-814.
    12. Kim, Chang Sik & Lee, Sungro, 2011. "Spurious regressions driven by excessive volatility," Economics Letters, Elsevier, vol. 113(3), pages 292-297.
    13. Cassola, Nuno & Morana, Claudio, 2010. "Comovements in volatility in the euro money market," Journal of International Money and Finance, Elsevier, vol. 29(3), pages 525-539, April.
    14. Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, pages 2139-2158.
    15. Haldrup Niels & Nielsen Morten Ø., 2006. "Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-24, September.
    16. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    17. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, pages 301-319.
    18. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
    19. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    20. Dalla, Violetta, 2015. "Power transformations of absolute returns and long memory estimation," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 1-18.
    21. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Modified information criteria and selection of long memory time series models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 116-131.
    22. Christian M. Hafner & Arie Preminger, 2016. "The effect of additive outliers on a fractional unit root test," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 401-420, October.
    23. repec:sbe:breart:v:31:y:2011:i:1:a:2767 is not listed on IDEAS
    24. Lean, Hooi Hooi & Smyth, Russell, 2009. "Long memory in US disaggregated petroleum consumption: Evidence from univariate and multivariate LM tests for fractional integration," Energy Policy, Elsevier, vol. 37(8), pages 3205-3211, August.
    25. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2008. "Modelling the US, UK and Japanese unemployment rates: Fractional integration and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4998-5013, July.

    More about this item

    Keywords

    Fractional integration; long memory; outliers; measurement errors; structural change;

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:aarhec:2003-10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.