IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v24y1999i3p427-449.html
   My bibliography  Save this article

Long memory and level shifts: Re-analyzing inflation rates

Author

Listed:
  • Philip Hans Franses

    (Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands)

  • Marius Ooms

    (Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands)

  • Charles S. Bos

    (Tinbergen Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands)

Abstract

A key application of long memory time series models concerns inflation. Long memory implies that shocks have a long-lasting effect. It may however be that empirical evidence for long memory is caused by neglecting one or more level shifts. Since such level shifts are not unlikely for inflation, where the shifts may be caused by sudden oil price shocks, we examine whether evidence for long memory (indicated by the relevance of an ARFIMA model) in G7 inflation rates is spurious or exaggerated. Our main findings are that apparent long memory is quite resistant to level shifts, although for a few inflation rates we find that evidence for long memory disappears.

Suggested Citation

  • Philip Hans Franses & Marius Ooms & Charles S. Bos, 1999. "Long memory and level shifts: Re-analyzing inflation rates," Empirical Economics, Springer, vol. 24(3), pages 427-449.
  • Handle: RePEc:spr:empeco:v:24:y:1999:i:3:p:427-449
    Note: received: March 1998/final version received: October 1998
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00181/papers/9024003/90240427.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donald W. K. Andrews, 2003. "Tests for Parameter Instability and Structural Change with Unknown Change Point: A Corrigendum," Econometrica, Econometric Society, vol. 71(1), pages 395-397, January.
    2. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    3. Hidalgo, Javier & Robinson, Peter M., 1996. "Testing for structural change in a long-memory environment," Journal of Econometrics, Elsevier, vol. 70(1), pages 159-174, January.
    4. Ooms, Marius & Hassler, Uwe, 1997. "On the effect of seasonal adjustment on the log-periodogram regression," Economics Letters, Elsevier, vol. 56(2), pages 135-141, October.
    5. Perron, P, 1993. "Erratum [The Great Crash, the Oil Price Shock and the Unit Root Hypothesis]," Econometrica, Econometric Society, vol. 61(1), pages 248-249, January.
    6. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    7. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    8. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    9. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    10. Perron, Pierre & Vogelsang, Timothy J, 1992. "Testing for a Unit Root in a Time Series with a Changing Mean: Corrections and Extensions," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 467-470, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    2. Laura Mayoral, 2005. "Is the observed persistence spurious? A test for fractional integration versus short memory and structural breaks," Economics Working Papers 956, Department of Economics and Business, Universitat Pompeu Fabra.
    3. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is what?: A simple time-domain test of long-memory vs. structural breaks," Economics Working Papers 954, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010. "Long memory versus structural breaks in modeling and forecasting realized volatility," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
    5. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    6. Georgios P. Kouretas & Mark E. Wohar, 2012. "The dynamics of inflation: a study of a large number of countries," Applied Economics, Taylor & Francis Journals, vol. 44(16), pages 2001-2026, June.
    7. Vasco J. Gabriel & Luis F. Martins, 2000. "The Forecast Performance of Long Memory and Markov Switching Models," NIPE Working Papers 2/2000, NIPE - Universidade do Minho.
    8. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    9. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, Enero-Abr.
    10. Seong Yeon Chang & Pierre Perron, 2017. "Fractional Unit Root Tests Allowing for a Structural Change in Trend under Both the Null and Alternative Hypotheses," Econometrics, MDPI, vol. 5(1), pages 1-26, January.
    11. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.
    12. Fiteni, Inmaculada, 2004. "[tau]-estimators of regression models with structural change of unknown location," Journal of Econometrics, Elsevier, vol. 119(1), pages 19-44, March.
    13. Banerjee, Anindya & Lumsdaine, Robin L & Stock, James H, 1992. "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 271-287, July.
    14. Sandberg, Rickard, 2016. "Trends, unit roots, structural changes, and time-varying asymmetries in U.S. macroeconomic data: the Stock and Watson data re-examined," Economic Modelling, Elsevier, vol. 52(PB), pages 699-713.
    15. Emilio Congregado & Javier Garcia-Clemente & Nicola Rubino & Inmaculada Vilchez, 2025. "Testing hysteresis for the US and UK involuntary part-time employment," Applied Economics, Taylor & Francis Journals, vol. 57(1), pages 16-36, January.
    16. Martin Schmidt, 2011. "Institutional Change and Factor Movement in Major League Baseball: An Examination of the Coase Theorem’s Invariance Principle," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 39(3), pages 187-205, November.
    17. Clements, M.P. & Smith, J., 1997. "Forecasting Seasonal UK Consumption Components," The Warwick Economics Research Paper Series (TWERPS) 487, University of Warwick, Department of Economics.
    18. Koen Pauwels & Shuba Srinivasan, 2004. "Who Benefits from Store Brand Entry?," Marketing Science, INFORMS, vol. 23(3), pages 364-390, July.
    19. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    20. Pierre Perron & Mototsugu Shintaniz & Tomoyoshi Yabu, 2020. "Trigonometric Trend Regressions of Unknown Frequencies with Stationary or Integrated Noise," Boston University - Department of Economics - Working Papers Series WP2020-012, Boston University - Department of Economics.

    More about this item

    Keywords

    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:24:y:1999:i:3:p:427-449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.