IDEAS home Printed from https://ideas.repec.org/p/ags/uwarer/268769.html
   My bibliography  Save this paper

Forecasting Seasonal UK Consumption Components

Author

Listed:
  • Clements, Michael P.
  • Smith, Jeremy

Abstract

Periodic models for seasonal data allow the parameters of the model to vary across the different seasons. This paper uses the components of UK consumption to see whether the periodic autoregressive (PAR) model yields more accurate forecasts than non-periodic models, such as the airline model of Box and Jenkins (1970), and autoregressive models that pre-test for (seasonal) unit roots. We analyse possible explanations for the relatively poor forecast performance of the periodic models that we find, notwithstanding the apparent support such models receive from the data in-sample.

Suggested Citation

  • Clements, Michael P. & Smith, Jeremy, 1997. "Forecasting Seasonal UK Consumption Components," Economic Research Papers 268769, University of Warwick - Department of Economics.
  • Handle: RePEc:ags:uwarer:268769
    DOI: 10.22004/ag.econ.268769
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/268769/files/seasjs3.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/268769/files/seasjs3.pdf?subformat=pdfa
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    2. Franses, Philip Hans, 1996. "Periodicity and Stochastic Trends in Economic Time Series," OUP Catalogue, Oxford University Press, number 9780198774549.
    3. Hylleberg, Svend & Jorgensen, Clara & Sorensen, Nils Karl, 1993. "Seasonality in Macroeconomic Time Series," Empirical Economics, Springer, vol. 18(2), pages 321-335.
    4. Osborn, Denise R., 1990. "A survey of seasonality in UK macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 6(3), pages 327-336, October.
    5. Smith, Jeremy & Otero, Jesus, 1997. "Structural breaks and seasonal integration," Economics Letters, Elsevier, vol. 56(1), pages 13-19, September.
    6. Clements, Michael P. & Hendry, David F., 1997. "An empirical study of seasonal unit roots in forecasting," International Journal of Forecasting, Elsevier, vol. 13(3), pages 341-355, September.
    7. Franses, Philip Hans & Paap, Richard, 1994. "Model Selection in Periodic Autoregressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(4), pages 421-439, November.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Taylor, A. M. Robert, 1997. "On the practical problems of computing seasonal unit root tests," International Journal of Forecasting, Elsevier, vol. 13(3), pages 307-318, September.
    10. Osborn, Denise R & Smith, Jeremy P, 1989. "The Performance of Periodic Autoregressive Models in Forecasting Seasonal U. K. Consumption," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 117-127, January.
    11. Godfrey, Leslie G, 1978. "Testing for Higher Order Serial Correlation in Regression Equations When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1303-1310, November.
    12. Tommaso Proietti, 1998. "Spurious periodic autoregressions," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 1-22.
    13. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    14. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    15. H. Peter Boswijk & Philip Hans Franses, 1996. "Unit Roots In Periodic Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(3), pages 221-245, May.
    16. Perron, Pierre, 1990. "Testing for a Unit Root in a Time Series with a Changing Mean," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 153-162, April.
    17. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    18. Franses, P.H. & McAleer, M., 1995. "Testing Nested and Non-Nested Periodically Integrated Autoregressive Models," Papers 9510, Tilburg - Center for Economic Research.
    19. Clements, Michael P & Hendry, David F, 1996. "Intercept Corrections and Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 475-494, Sept.-Oct.
    20. Osborn, Denise R, 1988. "Seasonality and Habit Persistence in a Life Cycle Model of Consumptio n," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(4), pages 255-266, October-D.
    21. Clements, Michael P. & Hendry, David F., 1998. "Forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 14(1), pages 111-131, March.
    22. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    2. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
    3. Clements, Michael P. & Hendry, David F., 1997. "An empirical study of seasonal unit roots in forecasting," International Journal of Forecasting, Elsevier, vol. 13(3), pages 341-355, September.
    4. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, December.
    5. Paap, Richard & Franses, Philip Hans & Hoek, Henk, 1997. "Mean shifts, unit roots and forecasting seasonal time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 357-368, September.
    6. Gustavsson, Patrik & Nordström, Jonas, 1999. "The Impact of Seasonal Unit Roots and Vector ARMA Modeling on Forecasting Monthly Tourism Flows," Working Paper Series 150, Trade Union Institute for Economic Research, revised 01 Jul 2000.
    7. Artur C. B. da Silva Lopes & Antonio Montanes, 2005. "The Behavior Of Hegy Tests For Quarterly Time Series With Seasonal Mean Shifts," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 83-108.
    8. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, June.
    9. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    10. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    11. Tomás Barrio & Mariam Camarero & Cecilio Tamarit, 2019. "Testing for Periodic Integration with a Changing Mean," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 45-75, June.
    12. Osborn, Denise R. & Heravi, Saeed & Birchenhall, C. R., 1999. "Seasonal unit roots and forecasts of two-digit European industrial production," International Journal of Forecasting, Elsevier, vol. 15(1), pages 27-47, February.
    13. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, June.
    14. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    15. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    16. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
    17. Olivier Darné & Claude Diebolt, 2002. "A Note on Seasonal Unit Root Tests," Quality & Quantity: International Journal of Methodology, Springer, vol. 36(3), pages 305-310, August.
    18. Ghysels, Eric & Perron, Pierre, 1996. "The effect of linear filters on dynamic time series with structural change," Journal of Econometrics, Elsevier, vol. 70(1), pages 69-97, January.
    19. Evans, Mark, 2006. "A study of the relationship between regional ferrous scrap prices in the USA, 1958-2004," Resources Policy, Elsevier, vol. 31(2), pages 65-77, June.
    20. Luis Filipe Martins & Pierre Perron, 2016. "Improved Tests for Forecast Comparisons in the Presence of Instabilities," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(5), pages 650-659, September.

    More about this item

    Keywords

    Agricultural and Food Policy; Research Methods/ Statistical Methods;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uwarer:268769. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: https://warwick.ac.uk/fac/soc/economics/research/workingpapers/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.