IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

The Behavior Of Hegy Tests For Quarterly Time Series With Seasonal Mean Shifts

  • Artur C. B. da Silva Lopes
  • Antonio Montanes

This paper studies the behavior of the HEGY statistics for quarterly data, for seasonal autoregressive unit roots, when the analyzed time series is deterministic seasonal stationary but exhibits a change in the seasonal pattern. We analyze also the HEGY test for the nonseasonal unit root. the data generation process being trend stationary too. Our results show that when the break magnitudes are finite, the HEGY test statistics are not asymptotically biased toward the nonrejection of the seasonal and nonseasonal unit root hypotheses. However, the finite sample power properties may be substantially affected, the behavior of the tests depending on the type of the break.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 24 (2005)
Issue (Month): 1 ()
Pages: 83-108

in new window

Handle: RePEc:taf:emetrv:v:24:y:2005:i:1:p:83-108
Contact details of provider: Web page:

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Vogelsang, T.J. & Perron, P., 1994. "Additional Tests for a Unit Root Allowing for a Break in the Trend Function at an Unknown Time," Cahiers de recherche 9422, Universite de Montreal, Departement de sciences economiques.
  2. Zivot, Eric & Andrews, Donald W K, 1992. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 251-70, July.
  3. Perron, P., 1994. "Further Evidence on Breaking Trend Functions in Macroeconomic Variables," Cahiers de recherche 9421, Universite de Montreal, Departement de sciences economiques.
  4. Franses, Philip Hans, 1996. "Periodicity and Stochastic Trends in Economic Time Series," OUP Catalogue, Oxford University Press, number 9780198774549.
  5. Smith, J. & Otero, J., 1995. "Structural Breaks and Seasonal Integration," The Warwick Economics Research Paper Series (TWERPS) 435, University of Warwick, Department of Economics.
  6. Hylleberg, Svend & Jorgensen, Clara & Sorensen, Nils Karl, 1993. "Seasonality in Macroeconomic Time Series," Empirical Economics, Springer, vol. 18(2), pages 321-35.
  7. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-52, July.
  8. Robin L. Lumsdaine & David H. Papell, 1997. "Multiple Trend Breaks And The Unit-Root Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 212-218, May.
  9. Montañés, Antonio & Reyes, Marcelo, 1999. "The asymptotic behaviour of the Dickey-Fuller tests under the crash hypothesis," Statistics & Probability Letters, Elsevier, vol. 42(1), pages 81-89, March.
  10. Balcombe, Kelvin, 1999. " Seasonal Unit Root Tests with Structural Breaks in Deterministic Seasonality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(4), pages 569-82, November.
  11. Hyllerberg, S. & Engle, R.F. & Granger, C.W.J. & Yoo, B.S., 1988. "Seasonal Integration And Cointegration," Papers 0-88-2, Pennsylvania State - Department of Economics.
  12. Paap, Richard & Franses, Philip Hans & Hoek, Henk, 1997. "Mean shifts, unit roots and forecasting seasonal time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 357-368, September.
  13. Franses, Ph.H.B.F. & Hoek, H. & Paap, R., 1995. "Bayesian Analysis of Seasonal Unit Roots and Seasonal Mean Shifts," Econometric Institute Research Papers EI 9527-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  14. Hassler, Uwe & Rodrigues, Paulo M. M., 2002. "Seasonal Unit Root Tests under Structural Breaks," Darmstadt Discussion Papers in Economics 37696, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute of Economics (VWL).
  15. Eric Ghysels & Denise R. Osborn & Paulo M. M. Rodrigues, 1999. "Seasonal Nonstationarity and Near-Nonstationarity," CIRANO Working Papers 99s-05, CIRANO.
  16. Smith, Richard J. & Taylor, A. M. Robert, 1998. "Additional critical values and asymptotic representations for seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 85(2), pages 269-288, August.
  17. da Silva Lopes, Artur C. B., 2001. "The robustness of tests for seasonal differencing to structural breaks," Economics Letters, Elsevier, vol. 71(2), pages 173-179, May.
  18. Ghysels, E., 1990. "On The Economic And Econometrics Of Seasonality," Cahiers de recherche 9028, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  19. Burridge, Peter & Taylor, A M Robert, 2001. "On the Properties of Regression-Based Tests for Seasonal Unit Roots in the Presence of Higher-Order Serial Correlation," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 374-79, July.
  20. Perron, Pierre & Vogelsang, Timothy J, 1992. "Nonstationarity and Level Shifts with an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 301-20, July.
  21. Clemente, Jesus & Montanes, Antonio & Reyes, Marcelo, 1998. "Testing for a unit root in variables with a double change in the mean," Economics Letters, Elsevier, vol. 59(2), pages 175-182, May.
  22. Osborn, Denise R., 1990. "A survey of seasonality in UK macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 6(3), pages 327-336, October.
  23. Perron, P., 1989. "Testing For A Unit Root In A Time Series With A Changing Mean," Papers 347, Princeton, Department of Economics - Econometric Research Program.
  24. Engle, R. F. & Granger, C. W. J. & Hylleberg, S. & Lee, H. S., 1993. "The Japanese consumption function," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 275-298.
  25. Philip Hans Franses & Timothy J. Vogelsang, 1998. "On Seasonal Cycles, Unit Roots, And Mean Shifts," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 231-240, May.
  26. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:24:y:2005:i:1:p:83-108. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.