IDEAS home Printed from https://ideas.repec.org/p/ptu/wpaper/w200920.html
   My bibliography  Save this paper

On LM-Type Tests for Seasonal Unit Roots in the Presence of a Break in Trend

Author

Listed:
  • Paulo M.M. Rodrigues
  • Luís Catela Nunes

Abstract

This paper proposes tests for seasonal unit roots allowing for the presence of a break in the trend slope occurring at an unknown date. In particular, new LM type tests are derived based on the framework introduced by Hylleberg, Engle, Granger and Yoo [HEGY] (1990). Null asymptotic distributions are derived for the no break case as well as when a break is present in the data generating process. A Monte Carlo investigation on the finite sample size and power performance of the new procedures is presented.

Suggested Citation

  • Paulo M.M. Rodrigues & Luís Catela Nunes, 2009. "On LM-Type Tests for Seasonal Unit Roots in the Presence of a Break in Trend," Working Papers w200920, Banco de Portugal, Economics and Research Department.
  • Handle: RePEc:ptu:wpaper:w200920
    as

    Download full text from publisher

    File URL: https://www.bportugal.pt/sites/default/files/anexos/papers/wp200920.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Schmidt, Peter & Lee, Junsoo, 1991. "A modification of the Schmidt-Phillips unit root test," Economics Letters, Elsevier, vol. 36(3), pages 285-289, July.
    2. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(2), pages 527-560, April.
    3. Jushan Bai, 1994. "Least Squares Estimation Of A Shift In Linear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 453-472, September.
    4. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    5. Philip Hans Franses & Timothy J. Vogelsang, 1998. "On Seasonal Cycles, Unit Roots, And Mean Shifts," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 231-240, May.
    6. Phillips, Peter C B, 1988. "Regression Theory for Near-Integrated Time Series," Econometrica, Econometric Society, vol. 56(5), pages 1021-1043, September.
    7. Ahn, Sung K. & Cho, Sinsup, 1993. "Some tests for unit roots in seasonal time series with deterministic trends," Statistics & Probability Letters, Elsevier, vol. 16(2), pages 85-95, January.
    8. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(02), pages 527-560, April.
    9. A. M. Robert Taylor, 1998. "Testing for Unit Roots in Monthly Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(3), pages 349-368, May.
    10. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    11. Vogelsang, Timothy J & Perron, Pierre, 1998. "Additional Tests for a Unit Root Allowing for a Break in the Trend Function at an Unknown Time," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1073-1100, November.
    12. Eric Ghysels & Denise R. Osborn & Paulo M. M. Rodrigues, 1999. "Seasonal Nonstationarity and Near-Nonstationarity," CIRANO Working Papers 99s-05, CIRANO.
    13. Smith, Richard J. & Taylor, A. M. Robert, 1998. "Additional critical values and asymptotic representations for seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 85(2), pages 269-288, August.
    14. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    15. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    16. Nunes, Luis C. & Kuan, Chung-Ming & Newbold, Paul, 1995. "Spurious Break," Econometric Theory, Cambridge University Press, vol. 11(4), pages 736-749, August.
    17. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    18. Burridge, Peter & Taylor, A M Robert, 2001. "On the Properties of Regression-Based Tests for Seasonal Unit Roots in the Presence of Higher-Order Serial Correlation," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 374-379, July.
    19. Breitung, Jörg & Franses, Philip Hans, 1998. "On Phillips–Perron-Type Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 14(2), pages 200-221, April.
    20. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    21. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, November.
    22. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2004. "Asymptotic Distributions For Regression-Based Seasonal Unit Root Test Statistics In A Near-Integrated Model," Econometric Theory, Cambridge University Press, vol. 20(4), pages 645-670, August.
    23. Uwe Hassler & Paulo M. M. Rodrigues, 2004. "Seasonal Unit Root Tests Under Structural Breaks," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 33-53, January.
    24. Kim, Dukpa & Perron, Pierre, 2009. "Unit root tests allowing for a break in the trend function at an unknown time under both the null and alternative hypotheses," Journal of Econometrics, Elsevier, vol. 148(1), pages 1-13, January.
    25. Harvey, David I. & Leybourne, Stephen J. & Newbold, Paul, 2002. "Seasonal unit root tests with seasonal mean shifts," Economics Letters, Elsevier, vol. 76(2), pages 295-302, July.
    26. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    27. Paulo M. M. Rodrigues, 2002. "On LM type tests for seasonal unit roots in quarterly data," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 176-195, June.
    28. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
    29. Schmidt, Peter & Phillips, C B Peter, 1992. "LM Tests for a Unit Root in the Presence of Deterministic Trends," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 257-287, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junsoo Lee & Mark C. Strazicich, 2013. "Minimum LM unit root test with one structural break," Economics Bulletin, AccessEcon, vol. 33(4), pages 2483-2492.
    2. Tomás Barrio & Mariam Camarero & Cecilio Tamarit, 2019. "Testing for Periodic Integration with a Changing Mean," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 45-75, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    2. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2007. "Efficient tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 141(2), pages 548-573, December.
    3. Artur C. B. da Silva Lopes & Antonio Montanes, 2005. "The Behavior Of Hegy Tests For Quarterly Time Series With Seasonal Mean Shifts," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 83-108.
    4. Uwe Hassler & Paulo M. M. Rodrigues, 2004. "Seasonal Unit Root Tests Under Structural Breaks," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 33-53, January.
    5. del Barrio Castro, Tomás & Rodrigues, Paulo M.M. & Robert Taylor, A.M., 2018. "Semi-Parametric Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 34(2), pages 447-476, April.
    6. Haldrup, Niels & Montanes, Antonio & Sanso, Andreu, 2005. "Measurement errors and outliers in seasonal unit root testing," Journal of Econometrics, Elsevier, vol. 127(1), pages 103-128, July.
    7. Tomas del Barrio Castro, 2007. "Using the HEGY Procedure When Not All Roots Are Present," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 910-922, November.
    8. Mendez Parra, Maximiliano, 2015. "Seasonal Unit Roots and Structural Breaks in agricultural time series: Monthly exports and domestic supply in Argentina," MPRA Paper 63831, University Library of Munich, Germany, revised 06 Apr 2015.
    9. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    10. Tomás Barrio & Mariam Camarero & Cecilio Tamarit, 2019. "Testing for Periodic Integration with a Changing Mean," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 45-75, June.
    11. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911.
    12. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    13. Chambers, Marcus J. & Ercolani, Joanne S. & Taylor, A.M. Robert, 2014. "Testing for seasonal unit roots by frequency domain regression," Journal of Econometrics, Elsevier, vol. 178(P2), pages 243-258.
    14. Méndez Parra, Maximiliano, 2015. "Futures prices, trade and domestic supply of agricultural commodities," Economics PhD Theses 0115, Department of Economics, University of Sussex Business School.
    15. Ricardo Quineche & Gabriel Rodríguez, 2017. "Selecting the Lag Length for the M GLS Unit Root Tests with Structural Change: A Warning Note for Practitioners Based on Simulations," Econometrics, MDPI, vol. 5(2), pages 1-10, April.
    16. Burridge, Peter & Robert Taylor, A. M., 2004. "Bootstrapping the HEGY seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 123(1), pages 67-87, November.
    17. Paulo M. M. Rodrigues, 2013. "Recursive adjustment, unit root tests and structural breaks," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 62-82, January.
    18. Smith, Richard J. & Robert Taylor, A. M., 2001. "Recursive and rolling regression-based tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 105(2), pages 309-336, December.
    19. Kurozumi, Eiji, 2002. "Testing for stationarity with a break," Journal of Econometrics, Elsevier, vol. 108(1), pages 63-99, May.
    20. Skrobotov, Anton, 2020. "Survey on structural breaks and unit root tests," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 96-141.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ptu:wpaper:w200920. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/bdpgvpt.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEE-NTD (email available below). General contact details of provider: https://edirc.repec.org/data/bdpgvpt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.