IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Efficient Tests of the Seasonal Unit Root Hypothesis

  • Paulo M.M. Rodrigues
  • A.M. Robert Taylor

In this paper we derive, under the assumption of Gaussian errors with known error covariance matrix, asymptotic local power bounds for seasonal unit root tests for both known and unknown deterministic scenarios and for an arbitrary seasonal aspect. We demonstrate that the optimal test of a unit root at a given spectral frequency behaves asymptotically independently of whether unit roots exist at other frequencies or not. We also develop modified versions of the optimal tests which attain the asymptotic Gaussian power bounds under much weaker conditions. We further propose nearefficient regression-based seasonal unit root tests using pseudo-GLS de-trending and show that these have limiting null distributions and asymptotic local power functions of a known form. Monte Carlo experiments indicate that the regression-based tests perform well in finite samples.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: main text
Download Restriction: no

Paper provided by European University Institute in its series Economics Working Papers with number ECO2004/29.

in new window

Date of creation: 2004
Date of revision:
Handle: RePEc:eui:euiwps:eco2004/29
Contact details of provider: Postal:
Badia Fiesolana, Via dei Roccettini, 9, 50014 San Domenico di Fiesole (FI) Italy

Phone: +39-055-4685.982
Fax: +39-055-4685.902
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Serena Ng & Pierre Perron, 1997. "Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power," Boston College Working Papers in Economics 369, Boston College Department of Economics, revised 01 Sep 2000.
  2. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2004. "Asymptotic Distributions For Regression-Based Seasonal Unit Root Test Statistics In A Near-Integrated Model," Econometric Theory, Cambridge University Press, vol. 20(04), pages 645-670, August.
  3. Smith, R.J. & Taylor, A.M.R., 1999. "Regression-Based Seasonal Unit Root Tests," Discussion Papers 99-15, Department of Economics, University of Birmingham.
  4. Smith, R.J. & Taylor, R., 1995. "Additional Critical Values and Asymptotic Representations for Seasonal Unit Roots Tests," Cambridge Working Papers in Economics 9529, Faculty of Economics, University of Cambridge.
  5. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, November.
  6. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-36, July.
  7. Paulo M. M. Rodrigues, 2002. "On LM type tests for seasonal unit roots in quarterly data," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 176-195, June.
  8. Paulo M.M. Rodrigues & A.M. Robert Taylor, . "Efficient Tests of the Seasonal Unit Root Hypothesis," Discussion Papers 06/12, University of Nottingham, School of Economics.
  9. Breitung, J rg & Franses, Philip Hans, 1998. "On Phillips Perron-Type Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 14(02), pages 200-221, April.
  10. J. Joseph Beaulieu & Jeffrey A. Miron, 1992. "Seasonal Unit Roots in Aggregate U.S. Data," NBER Technical Working Papers 0126, National Bureau of Economic Research, Inc.
  11. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
  12. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
  13. Schmidt, Peter & Phillips, C B Peter, 1992. "LM Tests for a Unit Root in the Presence of Deterministic Trends," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 257-87, August.
  14. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
  15. Jeganathan, P., 1991. "On the Asymptotic Behavior of Least-Squares Estimators in AR Time Series with Roots Near the Unit Circle," Econometric Theory, Cambridge University Press, vol. 7(03), pages 269-306, September.
  16. Burridge, Peter & Taylor, A M Robert, 2001. "On the Properties of Regression-Based Tests for Seasonal Unit Roots in the Presence of Higher-Order Serial Correlation," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 374-79, July.
  17. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
  18. Rodrigues, Paulo M.M., 2001. "Near Seasonal Integration," Econometric Theory, Cambridge University Press, vol. 17(01), pages 70-86, February.
  19. Gregoir, Stephane, 2006. "Efficient tests for the presence of a pair of complex conjugate unit roots in real time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 45-100, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2004/29. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anne Banks)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.