IDEAS home Printed from https://ideas.repec.org/p/ubi/deawps/73.html
   My bibliography  Save this paper

Numerical Distribution Functions for Seasonal Unit Root Tests with OLS and GLS Detrending

Author

Listed:
  • Tomás del Barrio Castro

    (Universitat de les Illes Balears)

  • Andrii Bodnar

    (Universitat de les Illes Balears)

  • Andreu Sansó Rosselló

    (Universitat de les Illes Balears)

Abstract

This paper implements the approach introduced by MacKinnon (1994, 1996) to estimate the response surface of the test statistics of seasonal unit root tests with OLS and GLS detrending for quarterly and monthly time series. The Gauss code that is available in the supplementary material of the paper produces p-values for five test statistics depending on the sample size, deterministic terms and frequency of the data. A comparison with previous studies is undertaken, and an empirical example using airport passenger arrivals to a tourist destination is carried out. Quantile function coefficients are reported for simple computation of critical values for tests at 1%, 5% and 10% significance levels.

Suggested Citation

  • Tomás del Barrio Castro & Andrii Bodnar & Andreu Sansó Rosselló, 2015. "Numerical Distribution Functions for Seasonal Unit Root Tests with OLS and GLS Detrending," DEA Working Papers 73, Universitat de les Illes Balears, Departament d'Economía Aplicada.
  • Handle: RePEc:ubi:deawps:73
    as

    Download full text from publisher

    File URL: http://www.uib.es/depart/deaweb/deawp/pdf/w73.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    2. Burridge, Peter & Taylor, A. M. Robert, 2001. "On regression-based tests for seasonal unit roots in the presence of periodic heteroscedasticity," Journal of Econometrics, Elsevier, vol. 104(1), pages 91-117, August.
    3. Tomás Del Barrio Castro & Denise R. Osborn, 2011. "HEGY Tests in the Presence of Moving Averages," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 691-704, October.
    4. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(2), pages 527-560, April.
    5. Tom�s del Barrio Castro & Denise R. Osborn & A.M. Robert Taylor, 2016. "The Performance of Lag Selection and Detrending Methods for HEGY Seasonal Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 35(1), pages 122-168, January.
    6. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2007. "Efficient tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 141(2), pages 548-573, December.
    7. Burridge, Peter & Taylor, A M Robert, 2001. "On the Properties of Regression-Based Tests for Seasonal Unit Roots in the Presence of Higher-Order Serial Correlation," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 374-379, July.
    8. Harvey, David I. & van Dijk, Dick, 2006. "Sample size, lag order and critical values of seasonal unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2734-2751, June.
    9. Smith, Richard J. & Taylor, A. M. Robert, 1998. "Additional critical values and asymptotic representations for seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 85(2), pages 269-288, August.
    10. Philip Hans Franses & Bart Hobijn, 1997. "Critical values for unit root tests in seasonal time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(1), pages 25-48.
    11. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    12. Castro, Tomás del Barrio & Osborn, Denise R. & Taylor, A.M. Robert, 2012. "On Augmented Hegy Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1121-1143, October.
    13. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    14. Diaz-Emparanza, Ignacio, 2014. "Numerical distribution functions for seasonal unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 237-247.
    15. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    16. Gregoir, Stephane, 2006. "Efficient tests for the presence of a pair of complex conjugate unit roots in real time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 45-100, January.
    17. MacKinnon, James G, 1994. "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 167-176, April.
    18. Cragg, John G, 1983. "More Efficient Estimation in the Presence of Heteroscedasticity of Unknown Form," Econometrica, Econometric Society, vol. 51(3), pages 751-763, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomás del Barrio Castro & Gianluca Cubadda & Denise R. Osborn, 2020. "On Cointegration for Processes Integrated at Different Frequencies," CEIS Research Paper 502, Tor Vergata University, CEIS, revised 11 Sep 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. del Barrio Castro, Tomás & Rodrigues, Paulo M.M. & Robert Taylor, A.M., 2018. "Semi-Parametric Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 34(2), pages 447-476, April.
    2. Chambers, Marcus J. & Ercolani, Joanne S. & Taylor, A.M. Robert, 2014. "Testing for seasonal unit roots by frequency domain regression," Journal of Econometrics, Elsevier, vol. 178(P2), pages 243-258.
    3. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2007. "Efficient tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 141(2), pages 548-573, December.
    4. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    5. Tom�s del Barrio Castro & Denise R. Osborn & A.M. Robert Taylor, 2016. "The Performance of Lag Selection and Detrending Methods for HEGY Seasonal Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 35(1), pages 122-168, January.
    6. Harvey, David I. & van Dijk, Dick, 2006. "Sample size, lag order and critical values of seasonal unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2734-2751, June.
    7. Castro, Tomás del Barrio & Osborn, Denise R. & Taylor, A.M. Robert, 2012. "On Augmented Hegy Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1121-1143, October.
    8. Politis, Dimitris, 2016. "HEGY test under seasonal heterogeneity," University of California at San Diego, Economics Working Paper Series qt2q4054kf, Department of Economics, UC San Diego.
    9. Burridge, Peter & Robert Taylor, A. M., 2004. "Bootstrapping the HEGY seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 123(1), pages 67-87, November.
    10. Jansson Michael & Nielsen Morten Ørregaard, 2011. "Nearly Efficient Likelihood Ratio Tests for Seasonal Unit Roots," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-21, February.
    11. Haldrup, Niels & Montanes, Antonio & Sanso, Andreu, 2005. "Measurement errors and outliers in seasonal unit root testing," Journal of Econometrics, Elsevier, vol. 127(1), pages 103-128, July.
    12. Rotger, Gabriel Pons, "undated". "Testing for Seasonal Unit Roots with Temporally Aggregated Time Series," Economics Working Papers 2003-16, Department of Economics and Business Economics, Aarhus University.
    13. Diaz-Emparanza, Ignacio, 2014. "Numerical distribution functions for seasonal unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 237-247.
    14. Eroğlu, Burak Alparslan & Göğebakan, Kemal Çağlar & Trokić, Mirza, 2018. "Powerful nonparametric seasonal unit root tests," Economics Letters, Elsevier, vol. 167(C), pages 75-80.
    15. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    16. Burridge, P. & Gjorstrup, F. & Robert Taylor, A. M., 2004. "Robust Inference on Seasonal Unit Roots via a Bootstrap Applied to OECD Macroeconomic Series," Working Papers 04/08, Department of Economics, City University London.
    17. Taylor, A. M. Robert, 2005. "Variance ratio tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 124(1), pages 33-54, January.
    18. Jesús Otero & Jeremy Smith, 2012. "Response surface models for the Leybourne unit root tests and lag order dependence," Computational Statistics, Springer, vol. 27(3), pages 473-486, September.
    19. Ikerne Valle & Kepa Astorkiza & Ignacio Díaz-Emparanza, 2017. "Measuring species concentration, diversification and dependency in a macro-fishery," Empirical Economics, Springer, vol. 52(4), pages 1689-1713, June.
    20. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.

    More about this item

    Keywords

    HEGY test; GLS detrending; response surfaces;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ubi:deawps:73. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Xisco Oliver). General contact details of provider: https://edirc.repec.org/data/dauibes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.