IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Sample size, lag order and critical values of seasonal unit root tests

  • Harvey, David I.
  • van Dijk, Dick

No abstract is available for this item.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 50 (2006)
Issue (Month): 10 (June)
Pages: 2734-2751

in new window

Handle: RePEc:eee:csdana:v:50:y:2006:i:10:p:2734-2751
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Richard Smith & Robert Taylor, . "Additional Critical Values and Asymptotic Representations for Seasonal Unit Root Tests," Discussion Papers 95/43, Department of Economics, University of York.
  2. Burridge, Peter & Robert Taylor, A. M., 2004. "Bootstrapping the HEGY seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 123(1), pages 67-87, November.
  3. Neil R. Ericsson & James G. MacKinnon, 2000. "Distributions of Error Correction Tests for Cointegration," Econometric Society World Congress 2000 Contributed Papers 0561, Econometric Society.
  4. Neil R. Ericsson, 1986. "Post-simulation analysis of Monte Carlo experiments: interpreting Pesaran's (1974) study of non-nested hypothesis test statistics," International Finance Discussion Papers 276, Board of Governors of the Federal Reserve System (U.S.).
  5. James G. MacKinnon, 1992. "Approximate Asymptotic Distribution Functions for Unit Roots and Cointegration Tests," Working Papers 861, Queen's University, Department of Economics.
  6. Hyllerberg, S. & Engle, R.F. & Granger, C.W.J. & Yoo, B.S., 1988. "Seasonal Integration And Cointegration," Papers 0-88-2, Pennsylvania State - Department of Economics.
  7. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
  8. Sephton, Peter S., 1995. "Response surface estimates of the KPSS stationarity test," Economics Letters, Elsevier, vol. 47(3-4), pages 255-261, March.
  9. J. Joseph Beaulieu & Jeffrey A. Miron, 1992. "Seasonal Unit Roots in Aggregate U.S. Data," NBER Technical Working Papers 0126, National Bureau of Economic Research, Inc.
  10. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521562607.
  11. James G. MacKinnon & Halbert White, 1983. "Some Heteroskedasticity Consistent Covariance Matrix Estimators with Improved Finite Sample Properties," Working Papers 537, Queen's University, Department of Economics.
  12. MacKinnon, James G & Haug, Alfred A & Michelis, Leo, 1999. "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 563-77, Sept.-Oct.
  13. Burridge, Peter & Taylor, A M Robert, 2001. "On the Properties of Regression-Based Tests for Seasonal Unit Roots in the Presence of Higher-Order Serial Correlation," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 374-79, July.
  14. Presno, Maria Jose & Lopez, Ana Jesus, 2003. "Response surface estimates of stationarity tests with a structural break," Economics Letters, Elsevier, vol. 78(3), pages 395-399, March.
  15. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-18, Nov.-Dec..
  16. Philip Hans Franses & Bart Hobijn, 1997. "Critical values for unit root tests in seasonal time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(1), pages 25-48.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:50:y:2006:i:10:p:2734-2751. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.