IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v21y2002i2p221-241.html
   My bibliography  Save this article

Asymptotic Distributions Of Seasonal Unit Root Tests: A Unifying Approach

Author

Listed:
  • Denise Osborn
  • Paulo Rodrigues

Abstract

This paper adopts a unified approach to the derivation of the asymptotic distributions of various seasonal unit root tests. The procedures considered are those of Dickey et al. [DHF], Kunst, Hylleberg et al. [HEGY], Osborn et al. [OCSB], Ghysels et al. [GHL] and Franses. This unified approach shows that the asymptotic distributions of all these test statistics are functions of the same vector of Brownian motions. The Kunst test and the overall HEGY F-test are, indeed, equivalent both asymptotically and in finite samples, while the Franses and GHL tests are shown to have equivalent parameterizations. The OCSB and DHF test regressions are viewed as restricted forms of the Kunst-HEGY regressions, and these restrictions may have non-trivial asymptotic implications.

Suggested Citation

  • Denise Osborn & Paulo Rodrigues, 2002. "Asymptotic Distributions Of Seasonal Unit Root Tests: A Unifying Approach," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 221-241.
  • Handle: RePEc:taf:emetrv:v:21:y:2002:i:2:p:221-241
    DOI: 10.1081/ETC-120014350
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1081/ETC-120014350
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghysels, E. & Hall, A. & Lee, H.S., 1995. "On Periodic Structures and Testing for Seasonal Unit Roots," Cahiers de recherche 9518, Universite de Montreal, Departement de sciences economiques.
    2. Dickey, David A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 329-331.
    3. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(02), pages 527-560, April.
    4. Osborn, Denise R, et al, 1988. "Seasonality and the Order of Integration for Consumption," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(4), pages 361-377, November.
    5. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    6. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 473-495.
    7. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    8. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    9. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882.
    10. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
    11. Franses, Philip Hans, 1991. "Seasonality, non-stationarity and the forecasting of monthly time series," International Journal of Forecasting, Elsevier, vol. 7(2), pages 199-208, August.
    12. Smith, Richard J. & Taylor, A. M. Robert, 1998. "Additional critical values and asymptotic representations for seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 85(2), pages 269-288, August.
    13. Philip Hans Franses & Bart Hobijn, 1997. "Critical values for unit root tests in seasonal time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(1), pages 25-48.
    14. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
    15. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    16. Hylleberg, Svend, 1995. "Tests for seasonal unit roots general to specific or specific to general?," Journal of Econometrics, Elsevier, vol. 69(1), pages 5-25, September.
    17. Franses, Philip Hans, 1994. "A multivariate approach to modeling univariate seasonal time series," Journal of Econometrics, Elsevier, vol. 63(1), pages 133-151, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. del Barrio Castro, Tomás & Rodrigues, Paulo M.M. & Robert Taylor, A.M., 2018. "Semi-Parametric Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 34(02), pages 447-476, April.
    2. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    3. Swanson, Norman R. & Urbach, Richard, 2015. "Prediction and simulation using simple models characterized by nonstationarity and seasonality," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 312-323.
    4. Tomas del Barrio Castro, 2007. "Using the HEGY Procedure When Not All Roots Are Present," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 910-922, November.
    5. Sandra G. Feltham & David E.A. Giles, 1999. "Testing for Unit Roots in Semi-Annual Data," Econometrics Working Papers 9912, Department of Economics, University of Victoria.
    6. Haldrup, Niels & Montanes, Antonio & Sanso, Andreu, 2005. "Measurement errors and outliers in seasonal unit root testing," Journal of Econometrics, Elsevier, vol. 127(1), pages 103-128, July.
    7. Castro, Tomás del Barrio & Osborn, Denise R. & Taylor, A.M. Robert, 2012. "On Augmented Hegy Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 28(05), pages 1121-1143, October.
    8. Eric Ghysels & Denise R. Osborn & Paulo M. M. Rodrigues, 1999. "Seasonal Nonstationarity and Near-Nonstationarity," CIRANO Working Papers 99s-05, CIRANO.
    9. del Barrio Castro, Tomas, 2006. "On the performance of the DHF tests against nonstationary alternatives," Statistics & Probability Letters, Elsevier, vol. 76(3), pages 291-297, February.
    10. da Silva Lopes, Artur C. B., 2001. "The robustness of tests for seasonal differencing to structural breaks," Economics Letters, Elsevier, vol. 71(2), pages 173-179, May.
    11. Rodrigues, Paulo M. M., 2000. "A note on the application of the DF test to seasonal data," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 171-175, April.

    More about this item

    Keywords

    Seasonal unit roots; Asymptotic distributions; Unit root tests; Brownian motions; JEL Classification ; C12; C22;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:21:y:2002:i:2:p:221-241. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.